آخرین اخبار نشریه
  • معرفي نشريه
    علمی

    نشریه پژوهش و توسعه فناوری پلیمر ایران با هدف ارتقای سطح دانش پژوهشگران در زمینه های مختلف علوم و فناوری پلیمر و در راستای ترویج علم پلیمر و ایجاد فضای مناسب برای مشارکت مراکز علمی صنعتی به صورت فصل نامه از ابتدای سال 1395 از سوی انجمن علوم و مهندسی پلیمر ایران منتشر شده است.

    از کلیه پژوهشگران، اساتید و دانشجویان دعوت می شود تا ضمن ارسال مقالات علمی- ترویجی خود در زمینه های مختلف پلیمری در انتشار موفقیت آمیز این نشریه مشارکت فرمایند.

     


    آخرین مقالات منتشر شده

    • دسترسی آزاد مقاله

      1 - اندازه گیری بلورینگی پلیمرها توسط گرماسنج روبشی تفاضلی
      مینا علیزاده اقدم
      شماره 4 , دوره 6 , زمستان 1400
      گرماسنج روبشی تفاضلی (DSC) به طور گسترده برای تعیین بلورینگی پلیمرهای نیمه بلورین به کار می رود. گرمای ذوب نمونه پلیمری معمولاً با اندازه گیری مساحت بین منحنی گرماگیر ذوب و خط پایه که به صورت دلخواه و خطی از ابتدا تا پایان منحنی ذوب ترسیم می شود، محاسبه می شود. خط پایه چکیده کامل
      گرماسنج روبشی تفاضلی (DSC) به طور گسترده برای تعیین بلورینگی پلیمرهای نیمه بلورین به کار می رود. گرمای ذوب نمونه پلیمری معمولاً با اندازه گیری مساحت بین منحنی گرماگیر ذوب و خط پایه که به صورت دلخواه و خطی از ابتدا تا پایان منحنی ذوب ترسیم می شود، محاسبه می شود. خط پایه ای که به این صورت تعیین می شود، مفهوم فیزیکی ندارد. خط پایه صحیح در واقع همان ظرفیت حرارتی نمونه نیمه بلورین است که هم با افزایش دما و هم با تغییر بلورینگی تغییر می کند و نمی تواند خطی باشد. لذا در اغلب موارد، نتایج بستگی زیادی به تخمین کاربر از خط پایه صحیح دارد. از مقایسه آنتالپی یا گرمای ذوب اندازه گیری شده با گرمای ذوب پلیمر کاملاً بلورین، درجه بلورینگی نمونه تعیین می شود. باید توجه کرد که آنتالپی، کمیتی وابسته به دما است. ذوب بخش های بلورین نمونه پلیمری در دماهایی متفاوت و پایین¬تر از دمای ذوب پلیمر کاملاً بلورین انجام می¬شود. به این ترتیب، مقایسه آنتالپی ذوب نمونه نیمه بلورین و کاملاً بلورین که در دماهای مختلفی تعیین شده¬اند، صحیح نیست. در این کار، نحوه تعیین یک خط پایه صحیح برای منحنی گرماگیر ذوب در نمودار حرارت دهی DSC و نیز تابعیت دمایی آنتالپی ذوب مورد بررسی قرار می گیرد که منجر به تعیین دقیق تر بلورینگی و تابعیت دمایی آن می شود. جزييات مقاله

    • دسترسی آزاد مقاله

      2 - نانوکامپوزیت های پلیمر/ نقاط کوانتومی و کاربردهای پزشکی آن ها
      فاطمه رفیع منزلت غلامعلي کوهمره
      شماره 4 , دوره 6 , زمستان 1400
      تاکنون مطالعات زیادی در راستای توسعه نانوکامپوزیت های پلیمر/ نقاط کوانتومی صورت ‌گرفته است. پلیمرهای شفاف در بخش مرئی طیف الکترومغناطیسی می‌توانند با ساختارهای مختلف با هدف فراهم آوردن خواص مکانیکی خوب و حفظ پایداری نوری نقاط کوانتومی در این نانوکامپوزیت ها مورد استفاده چکیده کامل
      تاکنون مطالعات زیادی در راستای توسعه نانوکامپوزیت های پلیمر/ نقاط کوانتومی صورت ‌گرفته است. پلیمرهای شفاف در بخش مرئی طیف الکترومغناطیسی می‌توانند با ساختارهای مختلف با هدف فراهم آوردن خواص مکانیکی خوب و حفظ پایداری نوری نقاط کوانتومی در این نانوکامپوزیت ها مورد استفاده قرار گیرند. نقاط کوانتومی با ابعاد نانومتری دارای ویژگی‌های قابل‌ توجه نوری و الکترونیکی هستند که می‌توان به پایداری نوری، عمر طولانی درخشندگی آنها، طیف جذبی پیوسته و پهن، طیف نشری باریک و بازده کوانتومی فلوئورسانسی بزرگ اشاره کرد. وقتی ‌که ابعاد مواد در مقیاس اتمی کوچک می‌شود و به نقاط کوانتومی تبدیل می‌شوند، خواص آن¬ها بسیار متفاوت از حالت توده است که فرصت‌های جدیدی را برای کاربردهای متنوع در زمینه پزشکي، زيست محيطي، انر‌‌ژي، کاتالیزور ها، ليزر، انواع حسگرها و آناليزگرها، دیودهای ناشر نور و ... فراهم کرده است. کاربردهايي مانند سامانه‌های رهایش دارو، تصویربرداری زیستی، حسگرها، نورگرمادرمانی و فتودینامیک درمانی، غشاهای پلیمری در جداسازي و تصفيه، سلول هاي خورشيدي و ... جهش هاي نويني را در علوم و صنايع کوانتومي ايجاد کرده اند. در این مقاله، پس از معرفی نقاط کوانتومی، ویژگی ها و روش سنتز آن ها، به نحوه طراحی انواع مختلف نانوکامپوزیت های پلیمر/نقاط کوانتومی پرداخته شده و سپس بر کاربردهای پزشکي آن ها تمرکز خواهیم داشت. جزييات مقاله

    • دسترسی آزاد مقاله

      3 - بررسی و امکان سنجی استفاده از قفس پرورش ماهی پلیمری در صنعت شیلات
      اميرحسين يزدان بخش
      شماره 4 , دوره 6 , زمستان 1400
      پلیمرها به دلیل خواص مکانیکی خوب و متنوع، چگالی پایین، قیمت مناسب، خواص ویژه عالی و دسترسی آسان به-ویژه در کشور ایران با منابع عظیم نفتی، رفته رفته جای مواد معدنی و فلزی را در صنایع مختلف گرفته‌اند که صنعت شیلات نیز از این قاعده مستثنی نیست. در کشور ایران با توجه به ظرف چکیده کامل
      پلیمرها به دلیل خواص مکانیکی خوب و متنوع، چگالی پایین، قیمت مناسب، خواص ویژه عالی و دسترسی آسان به-ویژه در کشور ایران با منابع عظیم نفتی، رفته رفته جای مواد معدنی و فلزی را در صنایع مختلف گرفته‌اند که صنعت شیلات نیز از این قاعده مستثنی نیست. در کشور ایران با توجه به ظرفیت‌های موجود به ویژه در شمال و جنوب کشور، اجرای طرح پرورش ماهی در قفس از سیاست های مهم و جدی شیلات است. پرورش ماهی در قفس‌های پلی-اتیلن در دهه‌های اخیر با توجه به مزایای خاص خود مورد توجه اکثر کشورهای دنیا قرار گرفته است. در این مقاله به معرفی قفس پرورش ماهی پلی اتیلنی پرداخته شده و همچنین اجزا، عملکرد و مزایای آن شرح داده شده است. با توجه به تنوع خواص پلیمرها، می‌توان در کنار بدنه اصلی پلی اتیلنی، اکثر اجزای دیگر را نیز از دیگر پلاستیک‌ها ساخت و بدین وسیله و با چاشنی ابتکار و نوآوری برخی محدودیت‌های قفس پلی اتیلنی را نیز مرتفع ساخت که این موارد نیز تشریح شده‌اند. همچنین مزایای پلی اتیلن نسبت به ایده‌های دیگر برای ساخت قفس پرورش ماهی (چوب و فولاد) بیان شده و ماتریس مقایسات زوجی معیارهای رقابتی و مقایسه پلی اتیلن با چوب و فولاد گزارش شده و نهايتاً توجيه اقتصادي استفاده از قفس پرورش ماهی پلیمری تبيين شده است. جزييات مقاله

    • دسترسی آزاد مقاله

      4 - تقويت آميخته پلي‌استال-ترموپلاستيک پلي‌يورتان براي استفاده در براکت سپر
      رسول محسن زاده
      شماره 4 , دوره 6 , زمستان 1400
      پلي استال، پلاستيک مورد استفاده براي ساخت براکت سپر است. ازآن جايي که پلي استال در گروه پلاستيک هاي مهندسي قرار مي گيرد و تمامي گريدهاي آن در توليد قطعات حساس بخش هاي مختلف صنعتي به مصرف مي رسند، مقاومت به ضربه يکي از مهم ترين خواص مورد انتظار از پلي استال ها است. پلي ا چکیده کامل
      پلي استال، پلاستيک مورد استفاده براي ساخت براکت سپر است. ازآن جايي که پلي استال در گروه پلاستيک هاي مهندسي قرار مي گيرد و تمامي گريدهاي آن در توليد قطعات حساس بخش هاي مختلف صنعتي به مصرف مي رسند، مقاومت به ضربه يکي از مهم ترين خواص مورد انتظار از پلي استال ها است. پلي استال با توجه به ريزساختار بلوری و همچنين نوع بافت بلوری خود، در برابر ضربه عملکرد ضعيفي از خود نشان مي دهد. وضعيت وقتي نگران کننده تر مي شود که بدانيم پلي استال در گروه پلاستيک¬هاي حساس به شکاف (Notched) نيز قرار دارند و چنانچه در زمان توليد يا کاربري، شکافي در قطعه ايجاد شود، مقاومت به ضربه آن نسبت به نمونه بدون شکاف کمتر مي¬شود. با توجه به اينکه براکت سپر در معرض ضربه قرار دارد، بنابراين چنانچه جنس اين قطعه از نظر چقرمگي بهبود يابد، باعث کاهش آسيب جلوبندي خودرو در تصادفات خواهد شد. از جمله راهکار افزايش چقرمگي پلي‌استال، آميخته‌سازي با لاستیک است. ترموپلاستيک پلي‌يورتان (TPU) به¬دليل سازگاري مناسب با پلي‌استال، کاربرد بيشتري در آميخته سازي با پلي‌استال و افزايش چقرمگي آن دارد. با‌اين‌حال، افزودن TPU در زمينه پلي‌استال منجر به کاهش استحکام مي‌شود. بنابراین، براي بهبود هم زمان استحکام و چقرمگي، از تقويت کننده‌ها استفاده شده است. تقويت کننده‌هاي استفاده شده در آميخته POM-TPU، شامل الياف شيشه و همچنين نانوذرات همچون نانوذرات خاک رس و نانوذرات کربنات‌کلسيم است. جزييات مقاله

    • دسترسی آزاد مقاله

      5 - مروری بر غشاهای جدید اسمز معکوس و کاربردهای آن
      مهرنوش محمدی
      شماره 4 , دوره 6 , زمستان 1400
      اسمز معکوس در بین دیگر فرایندهای غشایی محبوبیت بیشتری دارد؛ به طوری که پیش بینی شده است که ارزش بازار جهانی آن تا سال 2026 به 5 میلیارد دلار برسد. عدم استفاده از مواد شیمیایی، مقاومت مکانیکی بالا تعمیر، نگه داری و توسعه آسان از ویژگی های غشای اسمز معکوس است. غشای سلولز چکیده کامل
      اسمز معکوس در بین دیگر فرایندهای غشایی محبوبیت بیشتری دارد؛ به طوری که پیش بینی شده است که ارزش بازار جهانی آن تا سال 2026 به 5 میلیارد دلار برسد. عدم استفاده از مواد شیمیایی، مقاومت مکانیکی بالا تعمیر، نگه داری و توسعه آسان از ویژگی های غشای اسمز معکوس است. غشای سلولزاستات قدیمی ترین نوع غشای اسمز معکوس است که شامل یک لایه بالایی روی یک لایه متخلخل پشتیبان است که با افزایش درجه استیل دار شدن، انتخاب پذیری و شار عبوری از غشا نیز افزایش پیدا می کند. غشای لایه نازک کامپوزیتی در ترکیب با پلی آمید ضعف¬های غشای سلولزاستات را کاهش داده است. ساختار غشای لایه نازک کامپوزیتی- پلی آمیدی شامل لایه انتخاب پذیر نازک روی پشتیبان متخلخل است. لایه پشتیبان خواص مکانیکی غشا را افزایش می دهد. استفاده از نانوذرات و نانو لوله های کربنی در ساختار غشای لایه نازک می تواند به طور قابل توجهی سبب افزایش شار عبوری از غشا با حفظ میزان حذف املاح شود. نمک زدایی از آب لب شور و دریا، کاهش سختی آب ورودی به دیگ بخار، تصفیه پساب نفتی، حذف فلزات سنگین و... تعدادی از کاربردهای غشای اسمز معکوس است. در این مقاله به جنس، کاربرد و توسعه های اخیر غشاهای اسمز معکوس پرداخته شده است. جزييات مقاله

    • دسترسی آزاد مقاله

      6 - تاملی در برنامه درسی کارشناسی مهندسی بسپار در نظام آموزش عالی ایران: بهره‌گیری از رویکرد CDIO در تربیت مهندس
      علی عباسیان
      شماره 4 , دوره 6 , زمستان 1400
      شکل‌گیری رشته مهندسی بسپار در دنیا، از یک سو خاستگاه‌های صنعتی داشته و از سوی دیگر به واسطه تلاش‌های پژوهشگران دانشگاهی این حوزه بوده است. اما مسئله اصلی این است که به دلیل همین پراکندگی و فصل مشترکی که حوزه بسپار با سایر حوزه‌ها داشته، برنامه‌های آموزشی ارائه شده در دا چکیده کامل
      شکل‌گیری رشته مهندسی بسپار در دنیا، از یک سو خاستگاه‌های صنعتی داشته و از سوی دیگر به واسطه تلاش‌های پژوهشگران دانشگاهی این حوزه بوده است. اما مسئله اصلی این است که به دلیل همین پراکندگی و فصل مشترکی که حوزه بسپار با سایر حوزه‌ها داشته، برنامه‌های آموزشی ارائه شده در دانشگاه‌ها در این حوزه عموما به صورت گرایشی از علوم دیگر بوده و تنها در چند دهه اخیر بوده است که این رشته به صورت مستقل در دانشگاه‌های دنیا ارائه شده است. همزمان مباحث دیگری نیز برای بازاندیشی رشته‌های مهندسی توسط ابتکاراتی مانند CDIO (کوته‌نوشت concieve (درک)، Design (طراحی)، Implement (پیاده‌سازی) و Operation (اجرا)) مطرح شده است که تمرکز را از پژوهش‌محوری به عملی شدن منتقل کرده است تا به این ترتیب شرایط تربیت نیروی انسانی متخصص برای صنایع فراهم شود. این مطالعه ابتدا با بررسی تاریخچه شکل‌گیری رشته مهندسی بسپار در دانشگاه‌های دنیا، حوزه‌های گوناگون آن را شفاف کرده‌ و با بهینه‌کاوی 61 برنامه آموزش مهندسی بسپار یا گرایش‌های آن از دانشگاه‌های سراسر دنیا حوزه‌های فعلی آموزش بسپارها و همچنین اهداف یادگیری مهندسی بسپار را مشخص کرده است. سپس با انجام یک پیمایش میدانی در میان اساتید دانشکده‌های مهندسی پلیمر، شیمی و مواد دانشگاه‌های ایران، اهداف آموزش بسپار در ایران به لحاظ مطلوبیت (در نیازمندی‌های صنعت) و انطباق (با سرفصل‌های آموزشی فعلی) گردآوری شده است. در نهایت با توجه به نتایج این بررسی‌ها، پیشنهادهای لازم برای بهبود برنامه درسی یکپارچه آموزش مهندسی پلیمر در ایران، از دو منظر ساختار و گرایش‌ها و هم¬چنین انطباق محتوا با اهداف آموزشی ارائه شده است. جزييات مقاله
    پربازدیدترین مقالات

    • دسترسی آزاد مقاله

      1 - مروری بر هیدروژل ها: انواع، روش های تهیه و کاربردها
      هاجر جمشیدی
      شماره 2 , دوره 2 , تابستان 1396
      هیدروژل ها شبکه های پلیمری سه بعدی با اتصالات عرضي هستند كه قابليت جذب بسیار زیاد آب یا سیالات زيستي را حتي زير فشار دارند. این ترکیبات بدون انحلال می توانند مقدار زیادی آب جذب کنند. هیدروژل ها به روش شیمیایی یا فیزیکی شبکه ای می شوند. توجه روزافزون به هیدروژل هاي في چکیده کامل
      هیدروژل ها شبکه های پلیمری سه بعدی با اتصالات عرضي هستند كه قابليت جذب بسیار زیاد آب یا سیالات زيستي را حتي زير فشار دارند. این ترکیبات بدون انحلال می توانند مقدار زیادی آب جذب کنند. هیدروژل ها به روش شیمیایی یا فیزیکی شبکه ای می شوند. توجه روزافزون به هیدروژل هاي فيز كيي به دلیل راحتي نسبي فرايند و نبود شبکه ساز در سنتز آن هاست، در حالي که انواع شيميايي آن به دلیل استحکام مکانیکی خوب مورد توجه هستند. همچنين، هيدروژل هاي طبيعي به دليل تنوع، فراواني، ارزاني، تجديدپذيري، سمي نبودن و نيز زيست تخريب پذيري و زيست سازگاري نسبت به هيدروژل هاي سنتزي بسيار جالب توجه هستند. در چند دهه گذشته، هيدروژل ها به دلیل خواص منحصر به فرد در صنایع مختلف نظير غذایی، بسته بندی، داروسازي، کشاورزی، کاربردهای زیست پزشکی و زیست مهندسی و در ساخت دستگاه های فنی و الکترونیکی و نيز به عنوان جاذب برای حذف آلاینده ها در کاربردهای زیست محیطی به کار گرفته شده اند. با توجه به اهميت و قابليت هاي متنوع اين تركيبات به عنوان مواد اميدبخش در كاربردهاي مختلف، در مقاله حاضر، دست هبندی هیدروژل ها براساس ویژگی های مختلف، روش های تهیه و برخی از خواص و کاربردهای مهم آن ها در زمینه های مختلف مرور شده است. جزييات مقاله

    • دسترسی آزاد مقاله

      2 - مروری بر روش های ساخت نانوکامپوزیت بر پایه کیتوسان در دارورسانی
      سید مرتضی نقیب
      شماره 3 , دوره 2 , پاییز 1396
      سامانه‌های دارورسانی، فناوری انتقال هدفمند یا کنترل انتشار عوامل درمانی هستند. توسعه حامل مناسب دارو در کاربردهای زیست پزشکی به دلیل کاهش اثرات مضر جانبی ناخواسته و بهبود اثرات درمانی سودمند هستند. نانوذرات به عنوان حامل دارو به دلیل توانایی حمل انواع دارو به قسمت‌های م چکیده کامل
      سامانه‌های دارورسانی، فناوری انتقال هدفمند یا کنترل انتشار عوامل درمانی هستند. توسعه حامل مناسب دارو در کاربردهای زیست پزشکی به دلیل کاهش اثرات مضر جانبی ناخواسته و بهبود اثرات درمانی سودمند هستند. نانوذرات به عنوان حامل دارو به دلیل توانایی حمل انواع دارو به قسمت‌های متفاوت بدن در زمان مناسب بسیار با اهمیت هستند. کیتوسان پلیمری زیست تخریب پذیر، زیست سازگار و زیست چسبنده است که توجه زیادی را در دارورسانی به خود جلب کرده است. سامانه‌های دارورسانی تهیه شده از نانوذرات، مزایای متعددی از جمله بهبود کارایی و کاهش سمیت از خود نشان می‌دهند. نانوذرات کیتوسان، با توجه به اندازه کوچک و نسبت سطح به حجم بزرگی که دارند خواص فیزیکی-شیمیایی، ضدباکتری و زیستی بهتری نسبت به حالت توده متناظر را دارند. نانوکامپوزیت‌های بر پایه کیتوسان به عنوان حامل دارورسانی بسیار مورد توجه قرار گرفته اند؛ زیرا خواص مناسب بهتری نسبت به پلیمر خالص ارائه می‌دهند. جزييات مقاله

    • دسترسی آزاد مقاله

      3 - مروری کوتاه بر پلیمرهای قالب مولکولی و کاربردهای آن ها
      سماحه السادات  سجادی
      شماره 2 , دوره 2 , تابستان 1396
      به نوعی )Molecularly Imprinted Polymers( اصطلاح پلیمرهای قالب مولکولی از پلیمرها اطلاق می شود که در طول سنتز، مکان های مشخص برای یک هدف خاص در پلیمر ایجاد می شود. به همین منظور در طول سنتز برای ایجاد مکان های مشخص از قالب هایی که از لحاظ شکل و اندازه به مولکول هدف شب چکیده کامل
      به نوعی )Molecularly Imprinted Polymers( اصطلاح پلیمرهای قالب مولکولی از پلیمرها اطلاق می شود که در طول سنتز، مکان های مشخص برای یک هدف خاص در پلیمر ایجاد می شود. به همین منظور در طول سنتز برای ایجاد مکان های مشخص از قالب هایی که از لحاظ شکل و اندازه به مولکول هدف شباهت دارند، تهیه شده نسبت به مولکول هدف کاملا به صورت انتخابی MIPs . استفاده می شوند عمل می کنند. به عبارتی دیگر برهمکنش های شیمیایی فیزیکی بین قسمت های عامل دار ماتریس پلیمری و گروه های عاملی قالب مولکولی در هنگام پلیمری شدن به خاطر سپرده می شود و بعد از شست و شو و خارج کردن قالب، حفره مولکولی با خواص مشخص برای MIPs . با شکل و محیط الکتریکی مشخصی بدست می آید ،MIPs مولکول هدف به صورت گزینشی عمل می کند. به خاطر ویژگی های خاص در کاربردهای مختلفی مانند کاتالیزور، دارو رسانی، غشا، کشت سلولی، تبلور به کار برده می شوند. جزييات مقاله

    • دسترسی آزاد مقاله

      4 - مروری بر مدل‌سازی و شبیه‌سازی رهایش دارو از هیدروژل
      شماره 3 , دوره 1 , پاییز 1395
      امروزه پیشرفت‌های فراوانی در ارتباط با فن آوری‌های انتقال و رهایش کنترل‌شده دارو صورت گرفته است. جهت تامین نیازهای روز افزون در زمینه‌های دارویی و پزشکی، حامل های نوین رهایش دارو بر پایه پلیمر، طراحی و ساخته شده است. هدف از این مقاله ارائه یک دید کلی از اصول بنیادی و رو چکیده کامل
      امروزه پیشرفت‌های فراوانی در ارتباط با فن آوری‌های انتقال و رهایش کنترل‌شده دارو صورت گرفته است. جهت تامین نیازهای روز افزون در زمینه‌های دارویی و پزشکی، حامل های نوین رهایش دارو بر پایه پلیمر، طراحی و ساخته شده است. هدف از این مقاله ارائه یک دید کلی از اصول بنیادی و روش‌های مدل‌سازی رهایش دارو از سامانه‌های هیدروژلی می‌باشد. مدل سازی ریاضی با شناسایی پارامترهای کلیدی و مکانیزم های مولکولی رهایش، نقش مهمی در تسهیل طراحی سامانه‌های دارورسانی، ایفا می کند. در این مقاله، ابتدا نقش برجسته هیدروژل‌ها در رهایش کنترل‌شده، مکانیزم رهایش مولکولی و معیارهای طراحی هیدروژل برای کاربردهای رهایش کنترل‌شده، پرداخته می شود. سپس چندین مکانیزم برای توصیف رهایش مولکولی از سیستم‌های پلیمری هیدروژل از جمله رهایش کنترل‌شده با نفوذ، تورم و رهایش کنترل‌شده شیمیایی توضیح داده شده است. همچنین، هندسه دستگاه، مفروضات و محدودیت‌ها و معادلات بدست آمده برای هرکدام از سامانه ها آورده شده است. بخش پایانی بر سامانه‌های در حال ظهور انتقال هیدروژلی و چالش‌های مرتبط با مدل‌سازی این سامانه‌ها متمرکز شده است. جزييات مقاله

    • دسترسی آزاد مقاله

      5 - فرايند الکتروریسی نانوالیاف پلیمری
      شماره 2 , دوره 1 , تابستان 1395
      امروزه الیافی با قطر کمتر از 100 نانومتر به عنوان نانوالیاف تعریف میشوند. نانوالیاف میتوانند از پلیمرهای مختلف و نانو کامپوزیت های مرتبط ساخته شوند. الیاف پلیمری در ابعاد نانومتری خواص شگفت انگیز فیزیکی و شیمیایی منحصربه‌فردی نشان می دهند. نانوالياف پليمري به دليل كا چکیده کامل
      امروزه الیافی با قطر کمتر از 100 نانومتر به عنوان نانوالیاف تعریف میشوند. نانوالیاف میتوانند از پلیمرهای مختلف و نانو کامپوزیت های مرتبط ساخته شوند. الیاف پلیمری در ابعاد نانومتری خواص شگفت انگیز فیزیکی و شیمیایی منحصربه‌فردی نشان می دهند. نانوالياف پليمري به دليل كاربردهاي فراوان و ويژگيهاي خاصي كه در اين ابعاد پيدا ميكنند، مورد توجه صنايع مختلف قرار گرفته اند. از جمله كاربردهاي آن ها مي توان كاربردهاي پزشكي و تصفيه را نام برد. از اين رو توليد نانوالياف پليمري با استفاده از روش نسبتاً ساده و كارآمد، بسيار مفيد خواهد بود. نانوالیاف و ساختارهای نانو حفره های که بطور طبیعی در بدن انسان وجود دارند باعث شده تا تحقیق وسیع در این زمینه با جدیت بیشتر دنبال شود. مورد دیگری که باعث افزایش بررسی در این زمینه شده است امکان اصلاح سطوح پلیمری به وسیله مولکول هایی با عملکرد دلخواه است. يکي از مهمترين روش‌هاي تهیه نانوالياف پليمري، الکتروريسي است. محصول الکتروریسی نمد گونه ای از نانوالیاف است که لایه نازکی روی صفحه فلزی جمع کننده طی فرایند الکتروریسی بوجود می آورد. در واقع این لایه از انجماد یا انجماد ناقص جت روی صفحه های دو بعدی حاصل می شود. به دلیل ای نکه این لایه در زير میکروسکوپ الکترونی ساختار مشبک دارد به آن مش نانوالیاف یا شبکه نانوالیاف گفته می شود. در مقاله حاضر در مورد روش الکتروريسي، اجزای آن، اهميت و کاربرد نانوالياف، برخي خواص اصلي نانوالياف و روش هاي بررسي اين خواص، اطلاعات مختصر و مفيدي ارائه شده است. جزييات مقاله

    • دسترسی آزاد مقاله

      6 - نانوکامپوزیت های بر پایه ژلما در پزشکی
      شماره 4 , دوره 2 , زمستان 1396
      ژلاتین‌متاکریلات یا ژلما حاصل واکنش پلیمر طبیعی ژلاتین و متاکریلات انیدرید است. در این واکنش، ژلاتین توسط متاکریلات عامل¬دار می¬شود. هیدروژل ژلاتین عامل¬دارشده با متاکریلات در سال¬های اخیر با توجه به خواص زیستی و فیزیکی مناسب آن به طور وسیع برای کاربردهای مختلف پزشکی اس چکیده کامل
      ژلاتین‌متاکریلات یا ژلما حاصل واکنش پلیمر طبیعی ژلاتین و متاکریلات انیدرید است. در این واکنش، ژلاتین توسط متاکریلات عامل¬دار می¬شود. هیدروژل ژلاتین عامل¬دارشده با متاکریلات در سال¬های اخیر با توجه به خواص زیستی و فیزیکی مناسب آن به طور وسیع برای کاربردهای مختلف پزشکی استفاده شده است. هیدروژل ژلما به¬طور گسترده¬ای در مهندسی بافت از جمله مهندسی بافت استخوان، غضروف، قلب و عروق، به-کار می¬رود. این پلیمر در تحقیقات سلول¬های بنیادی، نشانه‌گذاری سلولی، دارورسانی و انتقال ژن و زیست-سازگاری جایگاه ویژه¬ای دارد. سامانه¬های هیدروژل ترکیبی همچنین می¬توانند با مخلوط کردن ژلما با نانوذراتی مانند نانولوله¬های کربنی و اکسیدگرافن و پلیمرهای دیگر برای ایجاد شبکه¬هایی با خواص خاص در کاربردهای زیستی مورد استفاده قرار گیرند. به بیان دیگر، در کنار خاصیت زیست¬سازگاری و زیست¬تخریب¬پذیری این ماده، با استفاده از نانوکامپوزیت¬ها می¬توان به خواص مطلوب دیگر مانند رسانایی و خواص ¬مکانیکی دست یافت. به¬کارگیری نانوکامپوزیت¬های هیدروژلی بر پایه ژلما به دلیل خواص منحصر به فرد، آینده امیدوارکننده¬ای را در کاربرد این مواد در مهندسی پزشکی نوید می¬دهد. جزييات مقاله

    • دسترسی آزاد مقاله

      7 - کاربرد شبیه سازی دینامیک مولکولی در سامانه های پلیمری
      محمد رضا  مقبلی
      شماره 1 , دوره 2 , بهار 1396
      در سالهای اخیر شبیه سازی دینامیک مولکولی به یکی از ابزارهای مهم برای حل مسائل پیچیده پیش روی علوم مختلف از جمله علوم و مهندسی پلیمر، تبدیل شده است. شبیه سازی دینامیک مولکولی این امکان را فراهم می آورد که رفتار پلیمرها به صورت کیفی در مقیاس مولکولی مورد مطالعه قرار گیرد چکیده کامل
      در سالهای اخیر شبیه سازی دینامیک مولکولی به یکی از ابزارهای مهم برای حل مسائل پیچیده پیش روی علوم مختلف از جمله علوم و مهندسی پلیمر، تبدیل شده است. شبیه سازی دینامیک مولکولی این امکان را فراهم می آورد که رفتار پلیمرها به صورت کیفی در مقیاس مولکولی مورد مطالعه قرار گیرد و تحلیل عمیق تری از پدید ههای مختلف فیزیکی حاصل شود. مطالعه سامانه های مختلف پلیمری در مقیاس مولکولی با آشکار کردن رفتار مولکول ها و زنجیرهای پلیمری اعم از آرایش یافتگی آن ها نسبت به یکدیگر، نحوه برقراری برهمکنش ها و آگاهی از سازوکارهای مولکولی، دانش طراحی سامانه ها را در کاربردهای گوناگون فراهم کرده است. تعیین مسیر طبیعی حرکت مولکول ها و زنجیرها در طول انجام فرآیندهای مختلف که با استفاده از شبیه سازی دینامیک مولکولی امکان پذیر است، جزئیات ساختاری ودینامیکی مولکول ها و به دنبال آن خواص ترمودینامیکی، حرارتی و مکانیکی سامانه را فراهم می کند. تلاش های صورت گرفته در زمینه شبیه سازی به علت کاهش هزینه های ساخت مواد و ارائه اطلاعات مفید بدون انجام آزمایش های متعدد و پرهزینه، شبیه سازی مولکولی را به عنوان روشی کارآمد در گسترش و طراحی سامانه های مختلف پلیمری نظیر نانوکامپوزیت های پایه پلیمری، چسب ها، غشاهای پلیمری، حامل های دارویی، محلول های پلیمری و ازدیاد برداشت نفت معرفی کرده است. در مقاله حاضر به مرور برخی از کاربردهای شبیه سازی دینامیک مولکولی در زمینه های مختلف علوم و مهندسی پلیمر اشاره شده است. از این رو، اهمیت گسترش استفاده از این ابزار مفید محاسباتی برای درک عمیق پدیده های دینامیکی و طراحی سامانه های پلیمری قبل از به کارگیری هرگونه روش ساخت آزمایشگاهی مورد تأکید قرار گرفته است. جزييات مقاله

    • دسترسی آزاد مقاله

      8 - مروری بر کاربرد مواد مرکب پلیمری در تولید پوشش هاي حفاظتي
      اعظم قاسمی
      شماره 2 , دوره 2 , تابستان 1396
      نجات جان انسان ها در برابر س الح های سرد و گرم از زمان های دور، همواره مورد توجه بوده است. پیشرفت فناوری تولید س الح های گرم، مستلزم به روز شدن فناوری تولید پوشش هاي حفاظتی است. برای این منظور دست یابی به موادی مقاوم با وزن حداقل، ضروری است. مواد مرکب پلیمری، در چند چکیده کامل
      نجات جان انسان ها در برابر س الح های سرد و گرم از زمان های دور، همواره مورد توجه بوده است. پیشرفت فناوری تولید س الح های گرم، مستلزم به روز شدن فناوری تولید پوشش هاي حفاظتی است. برای این منظور دست یابی به موادی مقاوم با وزن حداقل، ضروری است. مواد مرکب پلیمری، در چند دهه اخیر به ویژه با توسعه روش های نوین تولید، مورد توجه پژوهشگران قرار گرفته اند. پوشش هاي حفاظتي ساخته شده از مواد مرکب، ضمن داشتن وزن کم، از مقاومت بسیار خوبی هم برخوردارند. یکی از مهم ترین عوامل مقاومت مواد در برابر ضربه گلوله، حد کشسانی مواد است. مواد مرکب دارای حد کشسانی بالایی هستند که می توان با ترکیب این مواد به مواد مرکب هیبریدی دست یافت که از حد کشسانی بسیار بیشتری برخوردارند. در این مقاله ابتدا تاریخچه ساخت پوشش هاي حفاظتي بیان می شود و در ادامه، مواد مرکب پرکاربرد در ساخت پوشش هاي حفاظتي و روش های بافت آن ها، مدل های نیمه تحلیلی، پیش بینی نفوذ و محدودیت پرتابی معرفی می شود. جزييات مقاله

    • دسترسی آزاد مقاله

      9 - مروری بر روش های بازیافت شیمیایی پلی اتیلن ترفتالات (PET)
      فهیمه  عسکری
      شماره 1 , دوره 2 , بهار 1396
      تصور دنیای پیشرفته فعلی بدون وجود پلاستیک ها مشکل است. امروزه آن ها جزئی از زندگی ما شده اند و در ساخت اشیای مختلف از وسایل خانگی و مورد مصرف تا ابزار دقیق و پیچیده پزشکی و ساخت اعضای مصنوعی به کار می روند. پلاستیک ها به دلیل وجود ترکیبی از خواص متنوع در مقایسه با سایر چکیده کامل
      تصور دنیای پیشرفته فعلی بدون وجود پلاستیک ها مشکل است. امروزه آن ها جزئی از زندگی ما شده اند و در ساخت اشیای مختلف از وسایل خانگی و مورد مصرف تا ابزار دقیق و پیچیده پزشکی و ساخت اعضای مصنوعی به کار می روند. پلاستیک ها به دلیل وجود ترکیبی از خواص متنوع در مقایسه با سایر مواد مورد توجه ویژه قرار گرفته اند. این خواص عبارتند از: سبکی، ارزان بودن، سختی و انعطاف پذیری، مقاومت در مقابل خوردگی، رنگ پذیری، شفافیت، سهولت شکل پذیری. یکی از است. از این ماده در ساخت بطری های نوشابه، آب PET انواع این پلاستیک ها و بطری های روغن در حجم گسترده استفاده می شود . بنابراین بازیافت این پلیمر از لحاظ زیست محیطی و اقتصادی ضروری به نظر می رسد. در مقاله پیش رو بررسی می شود. به )PET( روش های مختلف بازیافت شیمیایی پلی اتیلن ترفتالات به 5 دسته متانولیز، گلیکولیز، آبکافت، PET طور کلی روش های بازیافت شیمیایی آمینولیز و آمونولیز تقسیم بندی می شود. در این مقاله ابتدا خلاصه ای از سنتز پلی اتیلن ترفتالات بکر و سپس روش های مختلف بازیافت شیمیایی ارائه می شود. جزييات مقاله

    • دسترسی آزاد مقاله

      10 - کاربرد نانوساختارهای پلی آنیلین در ابزار تولید و ذخیره انرژی
      لیلا ناجی
      شماره 1 , دوره 2 , بهار 1396
      پلی آنیلین یکی از مه مترین پلیمرهای رسانا به شمار می رود که با داشتن خواص مطلوبی از جمله سنتز آسان، تبدیل از اشکال نارسانا به رسانا توسط واکنش های اسید-باز، پایداری در محیط و تبدیل به اشکال اکسایشی مختلف در چند دهه ی اخیر کاربرد بسیاری در حسگرها، باتری ها، سلول های خورش چکیده کامل
      پلی آنیلین یکی از مه مترین پلیمرهای رسانا به شمار می رود که با داشتن خواص مطلوبی از جمله سنتز آسان، تبدیل از اشکال نارسانا به رسانا توسط واکنش های اسید-باز، پایداری در محیط و تبدیل به اشکال اکسایشی مختلف در چند دهه ی اخیر کاربرد بسیاری در حسگرها، باتری ها، سلول های خورشیدی و ابرخاز نها داشته است و اخیراً به دلیل افزایش تقاضا در استفاده از منابع تجدید پذیر، اهمیت زیادی پیدا کرده است. امروزه ساخت و توسعه ی سلول های خورشیدی کم هزینه بر پایه مواد پلیمری ارزان قیمت، سبک، منعطف و با قابلیت جذب بالای نور خورشید مورد توجه بسیاری قرار گرفته است. با توجه به نوسان توان تولید در سلول های خورشیدی، استفاده از ابزار ذخیره انرژی به منظور استفاده بهینه از منابع تجدید پذیر در لوازم الکترونیکی قابل حمل، وسایل نقلیه الکتریکی و ذخیره سازی در مقیاس شبکه از اهمیت بالایی برخوردار است. ابرخازن ها به عنوان ابزار ذخیره انرژی دارای چگالی توان بالا و چرخه ی عمر طولانی هستند. در این مقاله مروری پس از معرفی مختصر پلی آنیلین به کاربرد نانوساختارها و نانوکامپوزی تهای مختلف آن در سلول های خورشیدی پلیمری به عنوان لایه انتقال دهنده حفره و در ابرخازنها به عنوان الکترود اشاره شده است. جزييات مقاله
    مقالات در انتظار انتشار
  • پست الکترونیک
    Irdpt.ips@gmail.com
    آدرس
    تهران – كيلومتر15 اتوبان تهران كرج - بلوار پژوهش - پژوهشگاه پليمر و پتروشيمي ايران – طبقه اول
    تلفن
    44787060

    جستجو

    بانک ها و نمایه ها

    آمار مقالات

    تعداد دوره‌ها 6
    تعداد شماره ها 24
    مقالات چاپ شده 181
    تعداد نویسندگان 315
    تعداد مشاهده مقاله 341482
    تعداد دانلود مقاله 59659
    تعداد مقالات ارسال شده 349
    تعداد مقالات رد شده 75
    تعداد مقالات پذیرفته شده 261
    درصد پذیرش 74 %
    زمان پذیرش(روز) 14
    تعداد داوران 11
    آخرین به روزرسانی 1401/02/28