• فهرست مقالات polymer

      • دسترسی آزاد مقاله

        1 - مروری بر حسگر پلیمرهای قالب مولکولی بر پایه نقاط کوانتومی گرافن
        سید محمد رضا میلانی حسینی پریزاد  محمدنژاد الهه  جباری
        بخش مهم فرآیندها در شناسایی علائم مولکولی با روش های آزمایشگاهی پیچیده انجام می شود. آنچه امروزه قابل مشاهده است، مربوط به بهره برداری از دستاوردها و ترکیب آن ها به عنوان، فناوری های جدید قابل دسترس می باشند. انجام این هدف نیازمند پیشرفت فناوری های 100-1 نانومتر می باشد چکیده کامل
        بخش مهم فرآیندها در شناسایی علائم مولکولی با روش های آزمایشگاهی پیچیده انجام می شود. آنچه امروزه قابل مشاهده است، مربوط به بهره برداری از دستاوردها و ترکیب آن ها به عنوان، فناوری های جدید قابل دسترس می باشند. انجام این هدف نیازمند پیشرفت فناوری های 100-1 نانومتر می باشد تا بتوانند در تجسم و حس برهمکنش های بین گیرنده ها و اجزای خاص کمک کند. نقاط کوانتومی گرافن با سهولت تولید و زیست سازگاری و سمیت کم قابل استفاده این در همه زمینه ها شده است. این نوع نقاط کوانتومی، حاوی گروه های عاملی کربوکسیلیک اسید در سطح خود هستند که قابلیت تعویض با گروه های عاملی دیگر را داشته و موجب حلالیت بسیار بالا آن ها در آب شده است. همچنین آن-ها را برای عامل دار کردن با مواد آلی مختلف مثل پلیمرها، مناسب کرده است. قالبگیــری مولکولــی روشی ســریع و دقیــق بــرای تشــخیص مولكولها و یکــی از مهمتریــن روشهــای تشــخیص و تعییــن کمــی آنها می باشد. استفاده از حسگر پلیمرهای قالب مولکولی بر پایه نقاط کوانتومی گرافن به جهت گزینش پذیری و حساسیت بالا و همچنین قابلیت انحلال در محیط های آبی، موجب عملکرد بالای آن ها استفاده در اکثر زمینه های تشخیص و اندازه گیری شده است. پرونده مقاله
      • دسترسی آزاد مقاله

        2 - منشاء و کاربرد پلیمر¬های زیست¬کندسوز¬کننده در صنایع سلولزی
        مهرنوش توکلی علی قاسمیان
        امروزه، صنایع پلیمری به منظور کاهش اثرات زیست محیطی، اقدام به تولید موادی جدید با منشاء طبیعی کرده-اند. در این راستا، دو نوع زیست پلیمر توسعه یافته است. اولین گروه زیست پلیمر ها، براساس ساختار های ماکرومولکولی موجود در طبیعت همچون سلولز، لیگنین، نشاسته، آلژینات و ... بو چکیده کامل
        امروزه، صنایع پلیمری به منظور کاهش اثرات زیست محیطی، اقدام به تولید موادی جدید با منشاء طبیعی کرده-اند. در این راستا، دو نوع زیست پلیمر توسعه یافته است. اولین گروه زیست پلیمر ها، براساس ساختار های ماکرومولکولی موجود در طبیعت همچون سلولز، لیگنین، نشاسته، آلژینات و ... بوده که اغلب آن ها مشتقات حاصل از صنایع پایدار سلولزی می باشند. این ساختار های سرشار از اکسیژن، اگر چه، پایداری حرارتی کمی دارند، گرمای نسبتا کمی درطول احتراق آزاد کرده و اغلب توانایی تشکیل لایه ی زغالی را دارند. سایر زیست پلیمر ها بر پایه ی مولکول های سنتزی حاصل از منابع طبیعی می باشند. نه تنها پلیمر ها بلکه تمام مواد افزودنی مورد استفاده نیز باید برای اصلاح ویژگی ها و به منظور تحقق توسعه ی پایدار، دارای منشاء زیستی باشند. تحقیقات بی شماری به توسعه ی پلیمر های زیست کندسوز کننده ی حاصل از منابع اولیه ی مختلف، اختصاص یافته است. این پلیمر های زیست کندسوز-کننده را می توان به تنهایی و یا به عنوان جزئی از یک سیستم پیچیده تر استفاده کرد. این امر به ویژه برای مولکول-های سرشار از فسفر نظیر DNA یا فیتیک اسید و مولکول های دارای لایه ی زغالی مانند لیگنین صدق می کند. تمامی تحقیقات بررسی شده در این مقاله، نشان دهنده ی هدف اصلی در دستیابی و توسعه ی 100% مواد زیستی مناسب در کاربرد هایی است که به سطح زیادی از کندسوز کنندگی نیاز دارند. زیست مولکول های مختلف حاصل از صنایع سلولزی نیز مورد توجه ویژه در کندسوز کنندگی می باشند. پرونده مقاله
      • دسترسی آزاد مقاله

        3 - چندسازه‌های پلی‌اکسومتالات/پلیمر مروری بر روش‌های سنتز و خواص آن‌ها
        مرضیه کاویان میلاد غنی جهانبخش رئوف
        در این مقاله به بررسی اجمالی روش ساخت و خواص چندسازه‌های حاوی پلی‌اکسومتالات/پلیمر پرداخته شده است. پلی‌اکسومتالات‌ها POM))، خوشه‌های گسسته، مولکولی، حاوی اکسید فلز و دارای اندازه‌های مختلف، از یک تا چند نانومتر هستند که توپولوژی‌های مختلف و خواص شیمیایی و الکترونیکی مت چکیده کامل
        در این مقاله به بررسی اجمالی روش ساخت و خواص چندسازه‌های حاوی پلی‌اکسومتالات/پلیمر پرداخته شده است. پلی‌اکسومتالات‌ها POM))، خوشه‌های گسسته، مولکولی، حاوی اکسید فلز و دارای اندازه‌های مختلف، از یک تا چند نانومتر هستند که توپولوژی‌های مختلف و خواص شیمیایی و الکترونیکی متنوعی را نشان می‌دهند. پلی‌اکسومتالات‌ها، اسیدیته زیادی دارند. بنابراین می‌توانند کاتالیزورهای اسیدی کارآمدی برای واکنش‌های خاص مانند استری‌شدن، آب‌کافت، آلکیلدار کردن فریدل-کرافتس و پلیمریشدن بازکننده حلقه تتراهیدروفوران باشند. ادغام اجزای معدنی با ماتریس‌های پلیمری، باعث می‌شود خواص فاز معدنی با پلیمرها ترکیب شده و عملکردهای جدیدی ایجاد شود. از توده‌های ساختمانی میکرومتری معدنی، برای تقویت مقاومت مکانیکی، بهبود پایداری حرارتی و شیمیایی و بهبود عملکرد مواد پلیمری استفاده شده ‌است. با توسعه سریع فناوری نانو از پلیمرها همچنین می‌توانند به‌عنوان بستری برای تثبیت نانوساختارها استفاده شود. در نهایت چندسازه‌های حاصل، به‌طور هم‌زمان، ویژگی‌های نانوساختارها و بستر‌های پلیمری را خواهند داشت. روش‌هایی از جمله ترکیب فیزیکی، جذب الکترواستاتیکی، پیوند کووالانسی و اصلاح ابر مولکولی، روش‌های اصلی برای ترکیب پلی‌اکسومتالات در ماتریس‌های پلیمری آلی یا معدنی (به‌عنوان مثال سیلیس) هستند. چندسازه‌های پلی‌اکسومتالات/پلیمر دارای ویژگی‌های مختلف از جمله ویژگی‌های نوری، الکتریکی یا کاتالیزوری منحصربه‌فرد پلی‌اکسومتالات و قابلیت پردازش و پایداری مطلوب ماتریس‌های پلیمری هستند. چندسازه‌های پلی‌اکسومتالات/پلیمر می‌توانند در اپتیک، الکترونیک، زیست‌شناسی، پزشکی و کاتالیز کاربرد داشته باشند. پرونده مقاله
      • دسترسی آزاد مقاله

        4 - مروری بر خوداجتماعی پپتیدها و کاربردهای آن
        سهیلا  امام‌یاری
        خوداجتماعی مولکولی (Molecular Self-assembly) گردهم‌آیی آنی مولکول‌ها یا درشت‌مولکول‌ها برای تشکیل ساختارهای اَبَرمولکولی به وسیله‌ی برهم‌کنش‌های غیرکوالانسی است. این پدیده‌ی مهم موضوع تحقیقاتی میان‌رشته‌ای است که ظرفیت‌های کاربردی فراوانی در حوزه‌های مختلف دارد. یکی از چکیده کامل
        خوداجتماعی مولکولی (Molecular Self-assembly) گردهم‌آیی آنی مولکول‌ها یا درشت‌مولکول‌ها برای تشکیل ساختارهای اَبَرمولکولی به وسیله‌ی برهم‌کنش‌های غیرکوالانسی است. این پدیده‌ی مهم موضوع تحقیقاتی میان‌رشته‌ای است که ظرفیت‌های کاربردی فراوانی در حوزه‌های مختلف دارد. یکی از مهم‌ترین نیروهای پیشران (Driving Forces) خوداجتماعی مولکولی وجود خاصیت دومحیط‌دوستی (Amphiphilicity) در مولکول‌های سامانه است که می‌تواند سبب جدایی میکروفاز ‌شود و نانوساختارهای پیچیده و پایداری به وجود آورد. پپتیدهای (Peptides) خوداجتماع یکی از مهم‌ترین دسته‌ها در میان انواع مولکول‌های با قابلیت خوداجتماعی هستند. در سامانه‌های حاوی این پپتیدها رفتار غنی خوداجتماعی مشاهده می‌شود که به دلیل حضور هم‌زمان برهم‌کنش‌های مختلف (مانند برهم‌کنش‌های الکترواستاتیک (Electrostatic)، آب‌گریزی (Hydrophobicity) و پیوند هیدروژنی) در سامانه متشکل از آن‌ها و تنوع پیکربندی مولکولی آن‌هاست. درک بهتر خوداجتماعی پپتیدها سبب طراحی بهتر آن‌ها برای تولید نانوساختارهای کاربردی‌تر خواهد شد. در این مقاله‌ی مروری، ابتدا خوداجتماعی پپتیدها و اهمیت مطالعه‌ی آن بیان می‌شود. سپس چند نمونه از پپتیدهایی که خوداجتماعی آن‌ها به دلایل مختلف مورد توجه دانشمندان این حوزه است، مانند پپتیدهای حلقوی، پپتیدهای دومحیط‌دوست، پپتیدهای مکمل یونی (Ionic Com ple men tary  Pep tides) و چند نمونه‌ی دیگر، معرفی می‌شوند. همچنین برخی کاربردها و مزایای مهم خوداجتماعی پپتیدها، که شامل ساخت‌وساز در ابعاد نانومتری، مهندسی بافت (Tissue Engineer ing)، انتقال دارو (Drug  Delivery)، استفاده به عنوان حسگرهای زیستی و مطالعه‌ی بیماری‌های صورتبندی (Con formational Disease) است، مرور می‌شوند. پرونده مقاله
      • دسترسی آزاد مقاله

        5 - مروری بر سازوکار، ساختار و کاربرد پلیمرهای حافظه شکلی
        حمیدرضا حیدری
        پلیمرهای حافظه شکلی (SMPs)، جایگاهی ویژه از مواد را تشکیل می‌دهند و به‌عنوان یکی از نمایندگان سامانه‌های پلیمری هوشمند، در سال‌های اخیر بسیار مورد توجه قرار گرفته‌اند. پلیمرهای حافظه شکلی، پلیمرهای پاسخگو به محرک هستند. عوامل تحریک‌کننده ورودی می‌تواند به‌صورت نور، دما، چکیده کامل
        پلیمرهای حافظه شکلی (SMPs)، جایگاهی ویژه از مواد را تشکیل می‌دهند و به‌عنوان یکی از نمایندگان سامانه‌های پلیمری هوشمند، در سال‌های اخیر بسیار مورد توجه قرار گرفته‌اند. پلیمرهای حافظه شکلی، پلیمرهای پاسخگو به محرک هستند. عوامل تحریک‌کننده ورودی می‌تواند به‌صورت نور، دما، تغییر pH، تغییر حلال، میدان‌های الکتریکی یا مغناطیسی باشد که خروجی آن‌ها کرنش است. امروزه این پلیمرها، توجه زیادی را به خود جلب کرده است و علاوه‌براین تحقیقات بنیادی  و نوآوری‌های بسیاری روی این مواد انجام می‌شود. بررسی حاضر، مروری کوتاه با توجه ویژه بر ساختار، سازوکارها و کاربردهای SMPها، اثر حافظه شکلی و هم‌چنین پیشرفت‌ها و مفاهیم حال حاضر را که برای این پلیمرها انجام شده ‌است، ارائه می‌کند. از جمله کاربردهای پلیمرهای حافظه شکلی می‌توان در صنایع پزشکی، صنایع تجاری، صنایع هوافضا، پلیمرهای خودترمیم‌شونده و غیره اشاره کرد. پرونده مقاله
      • دسترسی آزاد مقاله

        6 - شبکه‌های پلیمری در ترکیبات متخلخل سلسله‌مراتبی کربن: سنتز، ویژگی‌ها و کاربردها
        زیبا شیرینی کردآبادی فاطمه رفیع منزلت
        ترکیبات متخلخل دارای انواع متفاوتی از حفره ها در محدوده ی میکرو، مزو یا ماکرو هستند که هر یک از این حفرات نقش ویژه ای را ایفا می کنند. در میان این ترکیبات، ترکیبات متخلخل کربنی به‌عنوان پلیمرهای مشبک بر پایه  ی کربن، به دلیل ویژگی های منحصربه‌فرد شان از جمله: پایداری مک چکیده کامل
        ترکیبات متخلخل دارای انواع متفاوتی از حفره ها در محدوده ی میکرو، مزو یا ماکرو هستند که هر یک از این حفرات نقش ویژه ای را ایفا می کنند. در میان این ترکیبات، ترکیبات متخلخل کربنی به‌عنوان پلیمرهای مشبک بر پایه  ی کربن، به دلیل ویژگی های منحصربه‌فرد شان از جمله: پایداری مکانیکی، شیمیایی و گرمایی و قیمت مناسبی که دارند، سهم ویژه ای را به خود اختصاص داده اند. دو روش اصلی برای تهیه ی ترکیبات متخلخل کربن وجود دارند: 1) روش قالب  (Tem plate  Meth od) 2) روش گرماکافت/فعال‌سازی (Pyrolysis/Activation Method). روش قالب  به دلیل استفاده از قالب و حذف آن، وقت گیر و پرهزینه است و روش گرماکافت/فعال‌سازی به طور گسترده برای تهیه ی ترکیبات متخلخل کربنی از انوع پلیمرها، ضایعات و زیست‌ توده ها در حضور فعال‌ کننده های فیزیکی و شیمیایی استفاده می‌شود. جایگزینی هترواتم ها از جمله: N ، O ، B ، S و P در ترکیبات کربن منجر به افزایش کارایی و توسعه ی کاربردهای آن ها می شود؛ به طور مثال استفاده از ترکیبات متخلخل کربن دوپه شده با نیتروژن به‌عنوان الکترود در سل های ابررسانا، کارایی ذخیره انرژی و در جاذب ها کارایی جذب CO2 را افزایش می دهد. ترکیبات کربن متخلخل به‌علت ویژگی های بی همتایشان به ویژه مساحت سطح زیاد، وزن کم و ظرفیت جذب بالا در ذخیره هیدروژن، حذف آلودگی‌ها، الکترودها و بستر کاتالیزور ها استفاده می شوند. پرونده مقاله
      • دسترسی آزاد مقاله

        7 - کامپوزیت های پلیمری حاوی الیاف پشم گوسفند با کاربرد عایق های حرارتی و صوتی: از معرفی تا کاربرد
        محسن صدرالدینی
        الیاف پشم گوسفند به عنوان يك لیف طبیعی و دوست دار محیط زیست در میان تمام الیاف نساجی از جایگاه بسیار ویژه ای برخوردار است که دلیل آن خواص منحصربه‌فرد آن از جمله خواص عایق حرارتی بالا، عایق و جاذب مناسب صوت، خود خاموش شوندگی، مقاومت بالا در برابر شعله، وزن کم و استحکام ب چکیده کامل
        الیاف پشم گوسفند به عنوان يك لیف طبیعی و دوست دار محیط زیست در میان تمام الیاف نساجی از جایگاه بسیار ویژه ای برخوردار است که دلیل آن خواص منحصربه‌فرد آن از جمله خواص عایق حرارتی بالا، عایق و جاذب مناسب صوت، خود خاموش شوندگی، مقاومت بالا در برابر شعله، وزن کم و استحکام بالا است. اگرچه الیاف پشم به طور سنتی در پوشاک و منسوجات کاربرد دارد، اما کاربردهای بسیار متنوع ديگري را نیز می توان برای آن قائل شد. یکی از مهم ترین کاربردهای صنعتی الیاف پشم گوسفند استفاده به عنوان فاز تقویت کننده در کامپوزیت های پلیمری با کاربرد عایق های حرارتی و جاذب های صوتی است. هدف این مقاله مروری معرفی الیاف پشم گوسفند و شناساندن آن به عنوان لیفی با عملکرد بالا به جاي جایگزین طبیعی و ارزان قیمت برای الیاف پلیمری سنتزی است. در این راستا، تلاش شده است تا بررسی جامعی پیرامون کامپوزیت های پلیمر-پشم با کاربری عایق حرارتی و جاذب صوت انجام شود. پرونده مقاله
      • دسترسی آزاد مقاله

        8 - مروری بر فناوری چاپ سه‌بعدی پلیمری: مواد، فرایند و راهبرد های طراحی برای کاربردهای پزشکی
        امیر حسنوند
        چاپ سه‌بعدی پلیمری فناوری نوظهوری است که تحقیقات بیشتر در این زمینه منجر به بهبود مستمر عملکرد طراحی چاپ سه‌بعدی پلیمری و پیشبرد مرزها در مهندسی و پزشکی مي شود. چاپ سه‌بعدی پلیمری امکان چاپ قطعات کاربردی کم‌هزینه با خواص و قابلیت های متنوع را فراهم می کند. در اینجا، ت چکیده کامل
        چاپ سه‌بعدی پلیمری فناوری نوظهوری است که تحقیقات بیشتر در این زمینه منجر به بهبود مستمر عملکرد طراحی چاپ سه‌بعدی پلیمری و پیشبرد مرزها در مهندسی و پزشکی مي شود. چاپ سه‌بعدی پلیمری امکان چاپ قطعات کاربردی کم‌هزینه با خواص و قابلیت های متنوع را فراهم می کند. در اینجا، تحقیقات مربوط به مواد، فرایندها و راهبرد‌های مرتبط با کاربردهای پزشکی ارائه و بررسي مي شود. تحقیقات در مواد منجر به توسعه پلیمرهایی با ویژگی‌های مفید مکانیکي و زیست‌سازگاری شده است. تنظیم خواص مکانیکی با تغییر عوامل فرایند چاپ به دست می‌آید. فناوری های چاپ سه‌بعدی پلیمری شامل اکستروژن، لایه‌برداری ورق، پليمري شدن نوري، لایه افزایشی، هم‌جوشی مبتنی بر پودر، پاشش مواد و رسوب مستقیم است، که روش هاي جوهرافشان حرارتی و لیزری رایج‌تر هستند. دو فناوری لایه‌برداری ورق و رسوب مستقیم در کاربردهای پزشکی كمتر استفاده مي شوند. رسوب مستقیم مواد، طراحی معماری های سودمند و سفارشی را امکان پذیر می کند. راهکار‌های طراحی، مانند توزیع سلسله‌مراتبی مواد، تعادل خواص متضاد را ممکن می‌سازد. کاربردهای پزشکی بیشتر بررسی‌شده شامل داربست های بافتی، کاشتينه‌های دندانی، آموزش پزشکی، سامانه‌های تحویل دارو و تجهیزات ایمنی می‌شود. در آخر به مطالعه چالش ها و موانع چاپ سه‌بعدی پلیمری پرداخته مي شود. پرونده مقاله
      • دسترسی آزاد مقاله

        9 - کاربرد هيدروژل‌های نانوکامپوزیتی مبتنی بر‌ زیست‌پلیمرها در سامانه‌های دارورسانی
        محمدحسین  کرمی مجید عبدوس محمدرضا کلایی امید مرادی
        هدف از این مطالعه، بررسی خواص هیدروژل‌های زیست‌پلیمری نانوکامپوزیت حاوی نانوذرات و کاربرد آن‌ها در سامانه‌های رهایش دارو است. هیدروژل نانوکامپوزیت‌های زیست‌پلیمری در سال‌های اخیر به‌صورت طبیعی و مصنوعی تهیه شده‌اند. هر کدام از روش‌ها مزایا و معایب خاص خود را دارند. در چکیده کامل
        هدف از این مطالعه، بررسی خواص هیدروژل‌های زیست‌پلیمری نانوکامپوزیت حاوی نانوذرات و کاربرد آن‌ها در سامانه‌های رهایش دارو است. هیدروژل نانوکامپوزیت‌های زیست‌پلیمری در سال‌های اخیر به‌صورت طبیعی و مصنوعی تهیه شده‌اند. هر کدام از روش‌ها مزایا و معایب خاص خود را دارند. در میان زیست ‌پلیمرهای طبیعی، سلولز، کربوکسی متیل‌سلولز، کیتوسان، کربوهیدرات متیل کیتوسان، آلژینات، نشاسته و ژلاتین به‌طور گسترده‌ای برای آماده‌سازی هیدروژل نانوکامپوزیت‌های زیست‌پلیمری و همچنین در میان زیست پلیمرهای مصنوعی، پلی‌اتیلن‌گلیکول، پلی‌وینیل‌الکل و پلی آکریلیک‌اسید مورد مطالعه قرار گرفته‌اند. هیدروژل‌ها بعد از بیشینه تورم، استحکام مکانیکی خود را از دست می‌دهند، بنابراین کاربردهایشان محدود می‌شود. سامانه‌های دارورسانی برای رهایش عوامل درمانی به‌کار می‌روند. حامل‌های مختلفی در طراحی سامانه دارورسانی مؤثر برای رهاسازی درمانی به مکان‌های هدف، از جمله پلیمرهای طبیعی و مصنوعی، مورد مطالعه قرار گرفته‌اند. هیدروژل نانوکامپوزیتی زیست‌سازگار در سال‌های اخیر به‌عنوان یکی از امیدوارکننده‌ترین سامانه‌های تحویل دارو با توجه به قابلیت‌های منحصربه‌فرد خود با ترکیب ویژگی‌های هیدروژل با نانوذرات مورد ارزیابی قرار گرفته‌اند. در زمینه رهایش دارو در سال‌های اخیر پیشرفت قابل‌توجهی حاصل شده که به‌ویژه با پیشرفت سریع نانوداروها باعث درک بهتر و بهبود رهایش دارو در مقابل بیماری‌های عفونی و سرطانی شده است. پرونده مقاله
      • دسترسی آزاد مقاله

        10 - الکترولیت‌های پلیمری خودترمیم‌شونده مورد استفاده در باتری‌های لیتیومی
        مارال  قهرمانی مبینا رازانی
        باتري‌هاي ليتيومی به‌عنوان يكي از پيشرفته‌ترين و مناسب‌ترين باتري‌هاي قابل شارژ، در سال‌هاي اخير مورد توجه محققان قرار گرفته‌اند. الکترولیت‌های پلیمری، از اجزای اصلی باتری و جایگزین مناسبی برای الکترولیت‌های مایع در نسل های بعدی باتری هستند. الکترولیت‌های پلیمری مورد اس چکیده کامل
        باتري‌هاي ليتيومی به‌عنوان يكي از پيشرفته‌ترين و مناسب‌ترين باتري‌هاي قابل شارژ، در سال‌هاي اخير مورد توجه محققان قرار گرفته‌اند. الکترولیت‌های پلیمری، از اجزای اصلی باتری و جایگزین مناسبی برای الکترولیت‌های مایع در نسل های بعدی باتری هستند. الکترولیت‌های پلیمری مورد استفاده در باتری، به دلیل حرکت متناوب یون ها یا آسیب های فیزیکی، ممکن است دچار آسیب یا افت عملکرد شوند. به‌منظور جلوگیری از خسارات ناشی از این پدیده، استفاده از الکترولیت‌های پلیمری خودترمیم‌شونده به‌عنوان راهکاری مناسب پیشنهاد می شود. توانایی خودترمیم‌شوندگی در الکترولیت‌های پلیمری، باعث می شود که به محض ایجاد شکاف یا ترک در سطح‌ آن‌ها، بدون نیاز به هیچ‌گونه محرکی، الکترولیت ها شروع به ترمیم خود کرده و پس از ترمیم، قادر به بازیابی همه خواص خود باشند. این توانایی، از ریزساختار و نوع پیوندهای شیمیایی پلیمرهای خودترمیم‌شونده ناشی می‌شود. به‌ طور کلی، الکترولیت‌های پلیمری خودترمیم‌شونده مورد استفاده در باتری‌ها، به دو دسته کلی الکترولیت‌های پلیمری بر پایه پیوند کووالانسی برگشت‌پذیر و الکترولیت‌های پلیمری بر پایه پیوند غیرکووالانسی برگشت پذیر از نوع پیوند ابرمولکولی تقسیم بندی می‌شوند. با توجه به اهمیت این موضوع، در این تحقیق مروری بر الکترولیت های پلیمری خودترمیم‌شونده مورد استفاده در نسل های بعدی باتری های لیتیومی انجام خواهد شد. پرونده مقاله
      • دسترسی آزاد مقاله

        11 - غشاهای درون پلیمری برای استخراج فلزات خاکی نادر
        زهرا دانش فر
        تقاضا برای عناصر نادر خاکی به‌دلیل کاربردهای بالقوه صنعتی در کاتالیزورها، آهنرباها، آلیاژهای باتری، سرامیک به‌طور قابل‌توجهی افزایش یافته است. علاوه بر این، خواص شیمیایی و فیزیکی مشابه این عناصر باعث شده که جداسازی آن‌ها دشوار باشد و پیشرفت در فرایند جداسازی این عناصر م چکیده کامل
        تقاضا برای عناصر نادر خاکی به‌دلیل کاربردهای بالقوه صنعتی در کاتالیزورها، آهنرباها، آلیاژهای باتری، سرامیک به‌طور قابل‌توجهی افزایش یافته است. علاوه بر این، خواص شیمیایی و فیزیکی مشابه این عناصر باعث شده که جداسازی آن‌ها دشوار باشد و پیشرفت در فرایند جداسازی این عناصر مزایای جهانی زیادی به همراه خواهد داشت. در میان روش‌های بهبودیافته، روش غشا به‌عنوان روشی پایدار با عملکرد آسان در جداسازی مورد توجه زیادی قرار گرفته است و غشاهای متعددی برای جداسازی طراحی شده‌اند. غشاهای درون‌پلیمری نسل جدید غشای غیر مایع است که با روش ساده ریخته‌گری محلولی حاوی فازهای مایع (استخراج‌کننده، نرم‌کننده/ اصلاح‌کننده) و پلیمرهای پایه ساخته می‌شود. غشاهای درون‌پلیمری به‌دلیل امکان استخراج و دفع هم‌زمان، گزینش‌پذیری بالا، پایداری عالی، کاربرد ساده، هزینه نسبتاً کم و مصرف انرژی کم، مزایای زیادی دارند. بنابراین در این مطالعه مروری بر غشاهای درون‌پلیمری گزارش‌شده در مطالعات تا به امروز ارائه می‌شود و عملکرد، نفوذپذیری و پایداری غشا با توجه به پلیمر پایه، استخراج‌کننده، نرم‌کننده و اصلاح‌کننده‌های مورد استفاده بررسی می‌شود. پرونده مقاله
      • دسترسی آزاد مقاله

        12 - مروری بر هیدروژل‌های حاوی الیاف در سامانه‌های دارورسانی
        محمدحسین  کرمی مجید عبدوس محمدرضا کلایی امید مرادی
        هیدروژل‌ها شبکه‌های سه‌بعدی از پلیمرهای آب‌دوست هستند که قادر به جذب و نگهداری مقادیر قابل‌توجهی از مایعات هستند. همچنین به‌طور گسترده در بهبود زخم، مهندسی بافت غضروف، مهندسی بافت استخوان، رهایش پروتئین‌ها، فاکتورهای رشد و آنتی‌بیوتیک‌ها استفاده می‌شود. در دهه‌های گذشته چکیده کامل
        هیدروژل‌ها شبکه‌های سه‌بعدی از پلیمرهای آب‌دوست هستند که قادر به جذب و نگهداری مقادیر قابل‌توجهی از مایعات هستند. همچنین به‌طور گسترده در بهبود زخم، مهندسی بافت غضروف، مهندسی بافت استخوان، رهایش پروتئین‌ها، فاکتورهای رشد و آنتی‌بیوتیک‌ها استفاده می‌شود. در دهه‌های گذشته، تحقیقات زیادی برای تسریع بهبود زخم و رهایش دارو انجام شده است. داربست‌های مبتنی بر هیدروژل در هر دو مورد یک راه‌حل تکراری بوده‌اند. باوجوداین‌که پایداری مکانیکی آن‌ها همچنان چالش محسوب می‌شود، برخی از آن‌ها در حال حاضر به بازار رسیده‌اند. برای غلبه بر این محدودیت، تقویت هیدروژل‌ها با الیاف مورد بررسی قرار گرفته است. شباهت ساختاری کامپوزیت‌های هیدروژل حاوی الیاف به بافت‌های طبیعی نیروی محرکه‌ای برای بهینه‌سازی و كاربرد این سامانه‌ها در زیست‌پزشکی بوده است. ترکیب فنون تشکیل هیدروژل و روش‌های ریسندگی الیاف در توسعه سامانه‌های داربست با استحکام مکانیکی بهبودیافته و خواص دارویی بسیار مهم بوده است. هیدروژل توانایی جذب ترشحات و حفظ تعادل رطوبت در محل زخم را دارد و الیاف از ساختار ماتریس سلول خارجی پیروی می‌کند. انتظار می‌رود ترکیب این دو ساختار در داربست با ایجاد محیطی مناسب با شناسایی و اتصال سلولی با فضای مرطوب و تنفسی مورد نیاز برای تشکیل بافت سالم، بهبود را تسهیل کند. اصلاح سطح الیاف به روش فیزیکی و شیمیایی باعث بهبود عملکرد کامپوزیت‌های هیدروژلی حای الیاف می‌شود. پرونده مقاله
      • دسترسی آزاد مقاله

        13 - پلیمرهای حافظه شکلی: ساختار، سازوکار، عملکرد و کاربردها
        حمیدرضا حیدری مرضیه حسینی
        در سه دهه‌ی اخیر، تحقیقات بسیاری در زمینه‌ی پلیمرهای حافظه شکلی انجام شده و در چند سال گذشته نیز علاقه به تحقیق و پژوهش در این زمینه، مورد توجه فراوان قرار گرفته‌ است. در این مطالعه به بازبینی جامع و کاملی در مورد ساختار، سازوکار، مدل و کاربردهای این دسته از پلیمرها پرد چکیده کامل
        در سه دهه‌ی اخیر، تحقیقات بسیاری در زمینه‌ی پلیمرهای حافظه شکلی انجام شده و در چند سال گذشته نیز علاقه به تحقیق و پژوهش در این زمینه، مورد توجه فراوان قرار گرفته‌ است. در این مطالعه به بازبینی جامع و کاملی در مورد ساختار، سازوکار، مدل و کاربردهای این دسته از پلیمرها پرداخته شده ‌است. به‌طورکلی سازوکارهای پلیمرهای حافظه شکلی به سه گروه القای گرمایی مستقیم، القای گرمایی غیرمستقیم و القای نوری تقسیم می‌شوند و هر کدام واحد کلید مخصوص به خود را دارند که کنترل‌کننده‌ی ساختار شکل است. این کلیدها دارای فاز آمورف یا نیمه‌بلورین هستند که در دو سطح فازی و مولکولی تعریف می‌شوند. هم‌چنین افزایش خواص مکانیکی از جمله استحکام و چقرمگی پلیمرهای حافظه شکلی، از اهمیت بالایی برخوردار است که می‌تواند باعث افزایش کارایی آن‌ها شود. از پلیمرهای حافظه شکلی می‌توان در صنایع پزشکی، هوافضا، نساجی و غیره استفاده کرد. در صنایع نساجی، از فرایند الکتروریسی به‌عنوان روشی ساده و کارآمد برای تهیه‌ی الیاف پلیمری حافظه شکلی و توسعه‌ی ساختار آن‌ها استفاده می‌شود که سازوکار و نحوه‌ی تهیه‌ی این الیاف مورد بررسی قرار خواهد گرفت. پرونده مقاله
      • دسترسی آزاد مقاله

        14 - مروری بر خواص مکانیکی کامپوزیت های پلیمری تقویت شده با نانولوله های کربنی
        عهدیه  امجدی فرشته براق جم
        پیشرفت‌ها در سنتز و تولید صنعتی نانومواد کربنی مانند نانولوله‌های کربنی (CNTها) به‌طور گسترده در صنعت مواد پلیمری در چند دهه گذشته به کار گرفته شده است که منجر به ایجاد گروهی از کامپوزیت‌های پلیمری تقویت¬شده با نانولوله‌های کربنی شده است. کامپوزیت‌های پلیمری تقویت¬شده چکیده کامل
        پیشرفت‌ها در سنتز و تولید صنعتی نانومواد کربنی مانند نانولوله‌های کربنی (CNTها) به‌طور گسترده در صنعت مواد پلیمری در چند دهه گذشته به کار گرفته شده است که منجر به ایجاد گروهی از کامپوزیت‌های پلیمری تقویت¬شده با نانولوله‌های کربنی شده است. کامپوزیت‌های پلیمری تقویت¬شده با CNTها دارای قابلیت استفاده در کاربردهای گوناگون مانند صنایع نظامی، صنایع حمل‌ونقل، هوافضا، خودرو و تجهیزات ورزشی هستند. CNTها دارای خواص حرارتی، الکتریکی و مکانیکی مطلوب و همچنین چگالی پایین هستند که محققان را به استفاده از آن¬ها در ساخت کامپوزیت‌های پلیمری ترغیب می¬کند. کامپوزیت‌های پلمیری به‌دلیل داشتن وزن پایین، خواص مکانیکی مطلوب و فرایندهای تولید متنوع نسبت به سایر انواع کامپوزیت¬ها و مواد مهندسی دیگر، مورد استقبال بسیاری از پژوهشگران و صنعتگران قرار گرفته است. از طرفی CNTها به‌دلیل ابعاد نانومتری و نیز استحکام خارق‌العاده، به‌عنوان تقویت‌کننده‌های مکانیکی برای کاربردهای ساختاری مختلف منحصربه‌فرد هستند. در این مطالعه مروری سعی شده است پژوهش‌های انجام‌شده در زمینه خواص مکانیکی کامپوزیت‌های پلیمری تقویت‌شده با CNT بررسی شود. در ادامه تأثیر چندین عامل مؤثر بر خواص مکانیکی کامپوزیت‌های پلیمری تقویت‌شده با CNT از جمله مقدار، شکل و سطح تماس عامل تقویت‌کننده با ماتریس پلیمری مشخص شد. پرونده مقاله
      • دسترسی آزاد مقاله

        15 - هیبریدها و کامپوزیت های پلیمر/چارچوب آلی-فلزی (Polymer/MOF): روش های سنتز و کاربردها
        محسن صدرالدینی امین علمداری
        چارچوب‌های آلی-فلزی (MOF) یا پلیمرهای کئوردیناسیونی متخلخل از خودآرایی گره‌های فلزی و پیوندهای آلی تشکیل می‌شوند که چارچوب بلوری نانومتخلخل را ایجاد می کنند. تخلخل بسیار بالا، مساحت سطح ویژه بالا، اندازه منافذ قابل تنظیم و پایداری خوب از شاخص¬ترین خواص MOF ها هستند. رون چکیده کامل
        چارچوب‌های آلی-فلزی (MOF) یا پلیمرهای کئوردیناسیونی متخلخل از خودآرایی گره‌های فلزی و پیوندهای آلی تشکیل می‌شوند که چارچوب بلوری نانومتخلخل را ایجاد می کنند. تخلخل بسیار بالا، مساحت سطح ویژه بالا، اندازه منافذ قابل تنظیم و پایداری خوب از شاخص¬ترین خواص MOF ها هستند. روند نوظهور در تحقیقات MOF ها، هیبریدسازی با مواد انعطاف¬پذیر نظیر پلیمرها است. پلیمرها دارای ویژگی‌های منحصربه‌فردی مانند نرمی، پایداری حرارتی و شیمیایی، خواص نوری مناسب و فرایندپذیری آسان هستند که می‌توانند با MOF ها ترکیب شوند تا ساختارهای هیبریدی با معماری‌ پیچیده و خواص منحصربه‌فرد پدید آورند. از مهم ترین کاربردهای بدیع هیبریدهای پلیمر/MOF می توان به جداسازی و جذب گاز، غشاهای تبادل یون و نانوصافی، حسگرها، کاتالیزورها، زیست‌پزشکی و ... اشاره کرد. هدف از این مقاله بررسی انواع روش های هیبریدسازی MOF ها و پلیمرها و همچنین کاربردهای جذاب این مواد هیبریدی است. پرونده مقاله
      • دسترسی آزاد مقاله

        16 - مروری بر رئولوژی مواد منفجره پیوندی با پلیمر
        محمود  حیدری
        امروزه مواد منفجره پیوندی با پلیمر در صنایع دفاعی و تجاری کاربرد گسترده‌ای دارند. در این نوع مواد منفجره، مقادیر بسیار بالای بلورهای انفجاری (حدود 90% وزنی) با محمل‌های پلیمری (حدود 10%) احاطه شده‌اند که منجر به کاهش حساسیت و افزایش ایمنی قابل توجه حین کاربری و انباردار چکیده کامل
        امروزه مواد منفجره پیوندی با پلیمر در صنایع دفاعی و تجاری کاربرد گسترده‌ای دارند. در این نوع مواد منفجره، مقادیر بسیار بالای بلورهای انفجاری (حدود 90% وزنی) با محمل‌های پلیمری (حدود 10%) احاطه شده‌اند که منجر به کاهش حساسیت و افزایش ایمنی قابل توجه حین کاربری و انبارداری می‌شود. این آمیزه‌ها به روش‌های متفاوتی همچون فشاری، ریخته‌گری، اکستروژن و تزریق قالبگیری می‌‌شوند. مطالعه رئولوژی این آمیزه‌های با درصد بالای جامد، منجر به یافتن روش مناسب کنترل کیفیت در مراحل مختلف تولید می‌شود. در ابتدا به مرور مطالعات انجام ‌شده پیرامون جایگزین‌های شبیه‌ساز رفتار رئولوژیکی مواد منفجره همچون دکلران،کربنات‌کلسیم، شکر و ... پرداخته شد. رفتار عمومی آمیزه‌های شبیه‌ساز همچون تنش تسلیم، وابستگی به نرخ برشی، وابستگی به زمان و ... با آمیزه‌های انفجاری اصلی مقایسه شد. نتایج نشان داد باوجود مشابهت‌ در برخی از رفتارهای رئولوژیکی، امکان پیش‌بینی و مطالعه همه رفتارهای رئولوژیکی آمیزه‌های انفجاری پیوندی با پلیمر با استفاده از مواد شبیه‌ساز وجود ندارد. در ادامه عوامل تأثیرگذار بر رئولوژی آمیزه‌های منفجره پیوندی با پلیمر، همچون توزیع اندازه ذرات بلورهای انفجاری، اصلاح سطح بلورهای انفجاری، حضور نرم‌کننده و . . . مرور شد. بررسی منابع علمی نشان داد استفاده از توزیع پهن اندازه ذرات بلورهای انفجاری نسبت به توزیع باریک منجر به کاهش قابل توجه گرانروی و وابستگی به نرخ برشی و زمان آمیزه شد. عدم برهم‌کنش‌های نیرومند میان ذرات بلوری و محمل پلیمری منجر به عدم مشاهده رفتار شبه‌جامد حتی در 85% وزنی از بلورهای انفجاری همچون اکتوژن در بستر پلی‌بوتادین‌خاتمه یافته با هیدروکسیل می‌شود. پرونده مقاله
      • دسترسی آزاد مقاله

        17 - مدل‌سازی رفتار لوله‌های کامپوزیتی زمینه پلیمری حامل سیال در معرض آتش‌ هیدروکربنی
        علیرضا  رحیمی احسان  سلاحی
        علی‌رغم خواص مکانیکی بسیار خوب مواد کامپوزیتی، مقاومت این مواد در برابر آتش مناسب نیست. بنابراین با توجه به استفاده روزافزون از لوله‌های کامپوزیتی به‌ویژه در صنایع نفت و گاز و پتروشیمی، تحلیل آتش‌سوزی در این لوله‌ها بسیار پراهمیت است. مهم‌ترین هدف این مقاله بررسی اثرات چکیده کامل
        علی‌رغم خواص مکانیکی بسیار خوب مواد کامپوزیتی، مقاومت این مواد در برابر آتش مناسب نیست. بنابراین با توجه به استفاده روزافزون از لوله‌های کامپوزیتی به‌ویژه در صنایع نفت و گاز و پتروشیمی، تحلیل آتش‌سوزی در این لوله‌ها بسیار پراهمیت است. مهم‌ترین هدف این مقاله بررسی اثرات آتش ‌بر مقاومت لوله‌های کامپوزیتی و میزان و مدت‌زمان دوام آوردن آن‌ها با انجام تحلیل حرارتی-مکانیکی به روش عددی برای لوله‌ی کامپوزیتی حامل سیال با بهره‌گیری از نرم‌افزار MATLAB بوده است. در مرحله‌ مدل‌سازی حرارتی ابتدا توزیع حرارت ناشی از آتش‌سوزی مواد نفتی در لوله کامپوزیتی برحسب مکان و زمان به‌دست آورده شده و سپس در مرحله مدل‌سازی مکانیکی، افت خواص مکانیکی براثر این افزایش دما محاسبه‌ شده و با در نظر گرفتن تنش‌های وارده از طرف سیال داخل لوله و همچنین تنش‌های حرارتی به وجود آمده، تنش‌های نهایی محاسبه شده است. سپس مدل حرارتی-مکانیکی حاصل با نتایج موجود در مقالات مرتبط، اعتبارسنجی شده و مورد استفاده قرار گرفته است. در نهایت با استفاده از معیار شکست Tsai–Wu زمان شکست لوله کامپوزیتی محاسبه شد. نتایج نشان دادند که با تخمین زمان شکست لوله کامپوزیتی، می‌توان میزان نیروی قابل‌تحمل توسط لوله را در شرایط مختلف تأثیر آتش ‌بر لوله، تعیین کرد. پرونده مقاله
      • دسترسی آزاد مقاله

        18 - فرایندهای پلیمری در پرتو هوش‌ مصنوعی
        زینب سادات  حسینی
        هوش ‌مصنوعی (Artificial Intelligence) (AI) با ورود به زمینه‌های مختلف، در حال متحول کردن زندگی روزمره بشر در کره خاکی است. این ابزار پنجره جدیدی را بر روی فعالان در زمینه علوم و مهندسی پلیمر مانند ساير علوم گشوده است و قادر است به‌طور گسترده در ساخت پلیمرها و مشتقات آن چکیده کامل
        هوش ‌مصنوعی (Artificial Intelligence) (AI) با ورود به زمینه‌های مختلف، در حال متحول کردن زندگی روزمره بشر در کره خاکی است. این ابزار پنجره جدیدی را بر روی فعالان در زمینه علوم و مهندسی پلیمر مانند ساير علوم گشوده است و قادر است به‌طور گسترده در ساخت پلیمرها و مشتقات آن‌ها، فرایند‌های اختلاط، شکل‌دهی پلیمرها، کامپوزیت‌ها و طراحی و ساخت تجهیزات مربوط استفاده شود. الگوریتم‌های هوش مصنوعی می‌توانند تجزیه و تحلیل حجم وسیع و نامحدودی از داده‌های اخذ شده از حسگرها و سامانه‌های نظارت بر فرایند را میسر سازند. این الگوها و روندها، توانایی پردازش مواردی که تشخیص دستی آن‌ها دشوار یا ناممکن است، فراهم کرده‌اند و در مدل‌سازی و شبیه‌سازی، کنترل ‌فرایند، تشخیص خطا و سامانه‌های توصیه‌کننده، کاربرد دارند و می‌تواند برای حصول اختلاط بهینه با عنایت به خواص اجزای مخلوط و مشخصات فنی محصول مورد ‌نظر، توصیه‌هایی ارائه دهد. هوش مصنوعی می‌تواند عوامل فرایندی را برای اطمینان از سازگاری و پراکندگی یکنواخت افزودنی‌ها، پرکننده‌ها و رنگ‌ها که منجر به مخلوطی با کیفیت بالاتر و محصولات با خواص بهینه می‌شود، کنترل کند. همچنین می‌تواند به کاهش زمان چرخه، بدون به خطر انداختن کیفیت محصول کمک کند که می‌تواند منجر به صرفه‌جویی قابل‌توجهی در هزینه و بهره‌وری بیشتر شود و می‌تواند امکان تعمیر و نگه‌داری پیشگیرانه را فراهم کند. در این مطالعه به کاربرد هوش مصنوعی در برخی از فرایند‌های پلیمری به‌طور خاص در آمیزه‌سازی لاستیک، تهیه کامپوزیت و اکستروژن اشاره می‌شود که نوید‌بخش مسیر جدیدی در فرایند‌های پلیمری است. پرونده مقاله