مروری بر بهینهسازی فرمولبندی و سازوکار خودترمیمی پوششهای پلیاوره
محورهای موضوعی : سامانه های پلیمری تحریک پذیرمعین بهزادپور 1 , مهدی همتیان دامغانی 2
1 - گروه شيمي
2 - دانشگاه فردوسی مشهد
کلید واژه: پوشش پلیاوره, خودترمیمی, سازوکار خودترمیمی, بهینهسازی فرمولبندی,
چکیده مقاله :
پلیمرهای خودترمیم شونده بهعنوان دستهای از پلیمرهای هوشمند طبقهبندی میشوند که قابلیت محافظت و جلوگیری از ایجاد نقص ساختاری در سطوح مختلف را دارند. پلیاورتان و پلیاوره از جمله پوششهایی هستند که امروزه در کاربردهای صنعتی گوناگون مورد توجه قرار گرفتهاند. پوششهای پلیاوره در مقایسه با پوششهای پلیاورتان باوجود فرایند شکلگیری مشابه دارای خواص متفاوتی هستند که از جمله آن میتوان به مقاومت کششی بالاتر و زمان پخت کوتاهتر پلیاوره اشاره کرد. اساس عملکرد سازوکار خودترمیمی در پلیاوره شامل موارد گوناگونی است که ناشی از معرفی روزافزون اجزایی با قابلیت پلیمری شدن و در نهایت ترمیم آسیبهای بهوجود آمده در مواد هستند. راهحل کاربردی دیگر، استفاده از واکنشهای شیمیایی پیوسته است که باعث شکلگیری پیوندهای شیمیایی و جبران آسیبهای بهوجودآمده بر روی مواد مختلف میشود. در این گزارش بهمنظور یافتن فرایندهای موثر خودترمیمی به بررسی سازوکارهای ذاتی و غیرذاتی مرتبط با پوششهای پلیاوره پرداخته شده است. همچنین، بهینهسازی و اصلاح فرمولبندی در جهت دستیابی به پوششهای خودترمیمی با خواص مکانیکی بالا در کوتاهترین زمان ممکن مورد بحث قرار خواهد گرفت. انتخاب نوع و نسبت دیایزوسیاناتها، همچنین گسترشدهنده زنجیر میتواند تأثیر قابلتوجهی در تسریع فرایند خودترمیمی و بهبود کارایی این نوع پوششها در طی فرایند آمادهسازی پوششهای پلیاوره داشته باشد.
Self-healing polymers are categorized as smart materials that are capable of surface protection and prevention of structural failure. Polyurethane/polyurea, as one of the representative coatings, has also attracted attention for industrial applications. Compared with polyurethane, polyurea coating, with a similar formation process, provides higher tensile strength and requires shorter curing time. The working principle of polyurea self-healing mechanisms is to fill cracks by introducing more healing components, which can polymerize and seal damage in the material. Alternatively, it can also be addressed by encouraging continuous chemical reactions, which can form bonds to close gaps between the separated faces of material due to the damage. In this paper, extrinsic and intrinsic mechanisms are reviewed to address the efficiency of the self-healing process. Furthermore, the extrinsic and intrinsic mechanisms have been compared to attain a better understanding of the advantages and limitations of each mechanism. Moreover, formulation optimization and strategic improvement to ensure self-healing within a shorter period of time with acceptable recovery of mechanical strength are also discussed. The choice and ratio of diisocyanates, as well as the choice of chain extender, are believed to have a crucial effect on the acceleration of the self-healing process and enhance self-healing efficiency during the preparation of polyurea coatings.
1. Li Y., Liu Y., Yao B., Narasimalu S., Dong Z., Rapid Preparation and Antimicrobial Activity of Polyurea Coatings with RE-Doped nano-Zno, Microb. Biotechnol, 15, 548-560, 2022.
2. Li Y., Fang C., Zhuang W.-Q, Wang H., Wang X. Antimicrobial Enhancement via Cerium (II)/Lanthanum (III)-doped TiO2 for Emergency Leak Sealing Polyurea Coating System, npj Mater. Degrad., 6, 41, 2022.
3. Rong Z., Li Y., Lim R.Z., Wang H., Dong Z., Li K., Wang X., Fire-Retardant Effect of Titania-Polyurea Coating and Additional Enhancement via Aromatic Diamine and Modified Melamine Polyphosphate, NPJ Mater. Degrad., 6, 38, 2022.
4. White S.R., Sottos N.R., Geubelle P.H., Moore J.S., Kessler M.R., Sriram S.R., Brown E.N., Viswanathan S. Autonomic Healing of Polymer Composites, Nature, 409, 794–797, 2001.
5. ESA, Enabling Self-Healing Capabilities—A Small Step to Bio-Mimetic Materials, 4476, 2006, Issue 1. Available online: http://esamultimedia.esa.int/docs/gsp/materials_report_4476.pdf (accessed on 1 March 2007).
6. Carlson H.C., Goretta K. Basic Materials Research Programs at the U.S. Air Force Office of Scientific Research, Mater. Sci. Eng. B., 132, 2–7, 2006.
7. Schmets A.J.M., Zwaag S.v.d. International Conference on Self-Healing. In Proceedings of the First International Conference on Self-Healing Materials, Noordwijk aan Zee, The Netherlands, 18–20, 2007.
8. Asnaashari M., Grafton R.J., Johnnie M. Precast Concrete Design-Construction of San Mateo-Hayward Bridge Widening Project. PCI J., 50, 26–43, 2005.
9. Polyurea Market Size, Share & Trends Analysis Report By Raw Material, by Product (Coating, Lining, Adhesives & Sealants), by Application (Construction, Industrial, Transportation), and Segment Forecasts, 2019–2025. Grand View Research. Available online: https://www.grandviewresearch.com/industry-analysis/polyurea-market (accessed on 5 September 2019).
10. Zechel S., Geitner R., Abend M., Siegmann M., Enke M., Kuhl N., Klein M., Vitz J., Gräfe S., Dietzek B., Intrinsic Self-Healing Polymers with a High E-Modulus Based on Dynamic Reversible Urea Bonds, NPG Asia Mater., 9, e420, 2017.
11. Lee D.-W., Kim H.-N., Lee D.S. Design of Azomethine Diols for Efficient Self-Healing of Strong Polyurethane Elas-tomers, Molecules, 23, 2928, 2018.
12. Qian Y., An X., Huang X., Pan X., Zhu J., Zhu X. Recyclable Self-Healing Polyurethane Cross-Linked by Alkyl Diselenide with Enhanced Mechanical Properties, Polymers, 11, 773, 2019.
13. Hu J., Mo R., Sheng X., Zhang X. A Self-Healing Polyurethane Elastomer with Excellent Mechanical Properties Based on Phase-Locked Dynamic Imine Bonds, Polym. Chem., 11, 2585–2594, 2020.
14. Li Y., Yang Z., Zhang J., Ding L., Pan L., Huang C., Zheng X., Zeng, C., Lin C. Novel Polyurethane with High Self-Healing Efficiency for Functional Energetic Composites, Polym. Test., 76, 82–89, 2019.
15. Wang Z., Yang H., Fairbanks B.D., Liang H., Ke J., Zhu C. Fast Self-Healing Engineered by UV-Curable Polyurethane Contained Diels-Alder Structure, Prog. Org. Coatings, 131, 131–136, 2019.
16. Jiang L., Liu Z., Lei Y., Yuan Y., Wu B., Lei J. Sustainable Thermosetting Polyurea Vitrimers Based on a Catalyst-Free Process with Reprocessability, Permanent Shape Reconfiguration and Self-Healing Performance, ACS Appl. Polym. Mater., 1, 3261–3268, 2019.
17. Xu J., Chen P., Wu J., Hu P., Fu Y., Jiang W., Fu J. Notch-Insensitive, Ultrastretchable, Efficient Self-Healing Supramolecular Polymers Constructed from Multiphase Active Hydrogen Bonds for Electronic Applications, Chem. Mater., 31, 7951–7961, 2019.
18. Guan S.W. 100% Solids Polyurethane and Polyurea Coatings Technology, Coat. World, 04, 49–58, 2003.
19. Iqbal N., Sharma P., Kumar D., Roy P., Protective Polyurea Coatings for Enhanced Blast Survivability of Concrete, Constr. Build. Mater., 175, 682–690, 2018.
20. Nagaraj S., Babu S.K. Protective Polyurea Coating for Enhanced Corrosion Resistance of Sole Bars in Railway Coaches. Mater, Today Proc., 27, 2407–2411, 2019.
21. Ping L., Jing L., Mingliang M., Yilong, S. Research on Seawater Corrosion Resistance of Spray Polyurea Protective Coating, Mater, Sci. Eng., 436, 012017, 2018.
22. Dai L.H., Wu C., An F.-J., Liao S.S. Experimental Investigation of Polyurea-Coated Steel Plates at Underwater Explosive Loading, Adv. Mater. Sci. Eng., 2018, 1264276, 2018.
23. Garcia S.J. Effect of Polymer Architecture on the Intrinsic Self-Healing Character of Polymers, Eur. Polym. J., 53, 118–125, 2014.
24. Dry, C. Passive Tuneable Fibers and Matrices, Int. J. Mod. Phys. B, 6, 2763–2771, 1992.
25. De Gennes P.G. Reptation of a Polymer Chain in the Presence of Fixed Obstacles, J. Chem. Phys., 55, 572–579, 1971.
26. Wool R.P., O’Connor K.M., A Theory Crack Healing in Polymers, J. Appl. Phys., 52, 5953–5963, 1981.
27. Li T., Zhang C., Xie Z., Xu J., Guo B.H., A Multi-Scale Investigation on Effects of Hydrogen Bonding on Micro-Structure and Macro-Properties in a Polyurea, Polymer, 145, 261–271, 2018.
28. Chen T., Fang L., Li X., Gao D., Lu C., Xu Z., Self-Healing Polymer Coatings of Polyurea-Urethane/Epoxy Blends with Reversible and Dynamic Bonds, Prog. Org. Coat., 147, 105876, 2020.
29. Hia I.L., Vahedi V., Pasbakhsh P. Self-Healing Polymer Composites: Prospects, Challenges, and Applications, Polym. Rev., 56, 225–261, 2016.
30. Willocq, B., Odent, J., Dubois, P., Raquez, J.-M. Advances in Intrinsic Self-Healing Polyurethanes and Related Composites, RSC Adv., 10, 13766–13782, 2020.
31. Zhang F., Ju P., Pan M., Zhang D., Huang Y., Li G., LiX. Self-Healing Mechanisms in Smart Protective Coatings: A Review, Corros. Sci., 144, 74–88, 2018.
32. Ullah H., Azizli K.A.M., Man Z.B., Ismail M.B.C., Khan M.I. The Potential of Microencapsulated Self-Healing Materials for Microcracks Recovery in Self-Healing Composite Systems: A Review, Polym. Rev., 56, 429–485, 2016.
33. Sun D., Zhang H., Tang X.-Z., Yang J.Water Resistant Reactive Microcapsules for Self-Healing Coatings in Harsh Environments, Polymer, 91, 33–40, 2016.
34. Thorne M.F., Simkovic F., Slater A.G. Production of Monodisperse Polyurea Microcapsules Using Microfluidics, Sci. Rep., 9, 17983, 2019.
35. Gite V.V., Tatiya P.D., Marathe R.J., Mahulikar P.P., Hundiwale D.G., Microencapsulation of Quinoline as a Corrosion Inhibitor in Polyurea Microcapsules for Application in Anticorrosive PU Coatings., Prog. Org. Coatings, 83, 11–18, 2015.
36. Njoku C.N., Bai W., Arukalam I.O., Yang L., Hou B., Njoku D.I., Li Y. Epoxy-Based Smart Coating with Self-Repairing Polyurea-Formaldehyde Microcapsules for Anticorrosion Protection of Aluminum Alloy AA2024., J. Coat. Technol. Res., 17, 797–813, 2020.
37. Zhou J., Xu W., Wang Y.-N., Shi B. Preparation of Polyurea Microcapsules Containing Phase Change Materials in a Rotating Packed bed., RSC Adv., 7, 21196–21204, 2017.
38. Guang-Long Z., Xiao-Zheng L., Zhi-Cheng T., Li-Xian S., Tao Z. Microencapsulation of n-Hexadecane as a Phase Change Material in Polyurea, Acta Phys. Chim. Sin., 20, 90–93, 2004.
39. Williams H., Trask R., Knights A., Bond I. Biomimetic Reliability Strategies for Self-Healing Vascular Networks in Engineering Materials., J. R. Soc. Interface, 5, 735–747, 2008.
40. An S., Lee M.W., Yarin A.L., Yoon S.S., A Review on Corrosion-Protective Extrinsic Self-Healing: Comparison of Microcapsulebased Systems and Those Based on Core-Shell Vascular Networks, Chem. Eng. J., 344, 206–220, 2018.
41. Toohey, K.S., Sottos, N.R., Lewis, J.A., Moore, J., White, S. Self-Healing Materials with Microvascular Networks, Nat. Mater., 6, 581–585, 2007.
42. Qamar I.P.S., Sottos N.R., Trask R.S. Grand Challenges in the Design and Manufacture of Vascular Self-Healing, Multifunct. Mater., 3, 013001, 2020.
43. Almutairi M.D., Aria A.I., Thakur V.K., Khan M.A. Self-Healing Mechanisms for 3D-Printed Polymeric Structures: From Lab to Reality, Polymers, 12, 1534, 2020.
44. Sanders P., Young A., Qin Y., Fancey K.S., Reithofer M.R., Guillet-Nicolas R., Kleitz F., Pamme N., Chin J.M, Stereolithographic 3D Printing of Extrinsically Self-Healing Composites, Sci. Rep., 9, 388, 2019.
45. Wu D.Y., Meure S., Solomon D., Self-Healing Polymeric Materials: A Review of Recent Developments, Prog. Polym. Sci., 33, 479–522, 2008.
46. Billiet S., Hillewaere X.K.D., Teixeira R.F.A., Du Prez F.E. Chemistry of Crosslinking Processes for Self-Healing Polymers, Macromol, Rapid Commun., 34, 290–309, 2013.
47. Doi M., Edwards S.F. Dynamics of Concentrated Polymer Systems. Part 1. —Brownian Motion in the Equilibrium State, J. Chem. Soc. Faraday Trans, 2, 74, 1789–1801, 1978.
48. Prager S., Tirrell M. The Healing Process at Polymer–Polymer Interfaces, J. Chem. Phys., 75, 5194–5198, 1981.
49. Kim S.M., Jeon H., Shin S.H., Park S.A., Jegal J., Hwang S.Y., Oh D.X., Park J. Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers, Adv. Mater., 30, 1705145, 2018.
50. Wool R.P., Self-Healing Materials: A Review, Soft Matter, 4, 400–418, 2008.
51. Brochard F., Spreading of Liquid Drops on Thin Cylinders: The “Manchon/Droplet” Transition, J. Chem. Phys., 84, 4664–4672, 1986.
52. Wool R.P. Chapter 8—Diffusion and autohesion. In Adhesion Science and Engineering, Dillard D.A., Pocius A.V., Chaudhury M., Eds. , Elsevier Science B.V: Amsterdam, The Netherland, 351–401, 2002.
53. Wojtecki R.J., Meador M.A., Rowan S. Using the Dynamic Bond to Access Macroscopically Responsive Structurally Dynamic Polymers, Nat. Mater., 10, 14–27, 2011.
54. He M., Chen X., Liu D., Wei D. Two-Dimensional Self-Healing Hydrogen-Bond-Based Supramolecular Polymer Film, Chin. Chem, Lett., 30, 961–965, 2019.
55. Cordier P., Tournilhac F., Soulié-Ziakovic C., Leibler L. Self-Healing and Thermoreversible Rubber from Supramolecular Assembly, Nature, 451, 977–980, 2008.
56. Ionita D., Gaina C., Cristea M., Banabic D. Tailoring the Hard Domain Cohesiveness in Polyurethanes by Interplay Between the Functionality and The Content of Chain Extender, RSC Adv., 5, 76852–76861, 2015.
57. Tahir M., Heinrich G., Mahmood N., Boldt R., Wießner S., Stöckelhuber K.W., Blending in Situ Polyurethane-Urea with Different Kinds of Rubber: Performance and Compatibility Aspects., Materials, 11, 2175, 2018.
58. Nevejans S., Ballard N., Miranda J.I., Reck B., Asua J.M., The Underlying Mechanisms for Self-Healing of Poly(disulfide)s, Phys. Chem. Chem. Phys., 18, 27577–27583, 2016.
59. Black S.P., Sanders J.K.M., Stefankiewicz A.R. Disulfide Exchange: Exposing Supramolecular Reactivity Through Dynamic Covalent Chemistry, Chem. Soc. Rev. 43, 1861–1872, 2014.
60. Formoso E., Asua J.M., Matxain J.M., Ruipérez F. The Role of Non-Covalent Interactions in the Self-Healing Mechanism of Disulfide-Based Polymers, Phys. Chem. Chem. Phys. 19, 18461–18470, 2017.
61. Javierre E. Modeling Self-Healing Mechanisms in Coatings: Approaches and Perspectives, Coatings, 9, 122, 2019.
62. Nunes R.W., Martin J.R., Johnson J.F. Influence of Molecular Weight and Molecular Weight Distribution on Mechanical Properties of Polymers, Polym. Eng. Sci. 22, 205–228, 1982.
63. Balani K., Verma V., Agarwal A., Narayan R., Physical, Thermal, and Mechanical Properties of Polymers. In Biosurfaces: A Materials Science and Engineering Perspective, John Wiley & Sons, Inc: Hoboken, NJ, USA, 329–344, 2014.
64. Shrivastava A., 1—Introduction to Plastics Engineering. In Introduction to Plastics Engineering, Shrivastava, A., Ed., William Andrew Publishing: Norwich, NY, USA, 1–16, 2018.
65. Qu Q., Wang H., He J., Qin T., Da Y., Tian X., Analysis of the Microphase Structure and Performance of Self-Healing Polyurethanes Containing Dynamic Disulfide Bonds, Soft Matter, 16, 9128–9139, 2020.
66. Li T., Zheng T., Han J., Liu Z., Guo Z.X., Zhuang Z., Xu J., Guo B.H. Effects of Diisocyanate Structure and Disulfide Chain Extender on Hard Segmental Packing and Self-Healing Property of Polyurea Elastomers, Polymers, 11, 838, 2019.
67. Zhang L., Wang D., Xu L., Zhang X., Zhang A., Xu Y.A., Highly Stretchable, Transparent, Notch-Insensitive Self-Healing Elastomer for Coating, J. Mater. Chem. C, 8, 2043–2053, 2020.
68. Stukalin E.B., Cai L.H., Kumar N.A., Leibler L., Rubinstein M. Self-Healing of Unentangled Polymer Networks with Reversible Bonds, Macromolecules, 46, 7525–7541, 2013.
69. Ying H., Zhang Y., Cheng J., Dynamic Urea Bond for The Design of Reversible and Self-Healing Polymers, Nat. Commun., 5, 3218, 2014.
70. Liu J., Li Y., Influence of 12Cr1MoV Material on Tissue Properties at High Temperature and Long Operating Time, Processes, 10, 192, 2022.
71. Das S., Cox D.F., Wilkes G.L., Klinedinst D.B., Yilgor I., Yilgor E., Beyer F.L., Effect of Symmetry and H-bond Strength of Hard Segments on the Structure-Property Relationships of Segmented, Nonchain Extended Polyurethanes and Polyureas, J. Macromol. Sci. Part B, 46, 853–875, 2007.
72. Ma Y., Zhang Y., Liu J., Ge Y., Yan X., Sun Y., Wu J., Zhang P., GO-modified Double-Walled Polyurea Microcapsules/Epoxy Composites for Marine Anticorrosive Self-Healing Coating, Mater. Des., 189, 108547, 2020.
73. Li T., Xie Z., Xu J., Weng Y.X., Guo B.H., Design of A Self-Healing Cross-Linked Polyurea with Dynamic Cross-Links Based on Disulfide Bonds and Hydrogen Bonding, Eur. Polym. J., 107, 249–257, 2018.