• Home
  • Jalal Barzin
  • OpenAccess
    • List of Articles Jalal Barzin

      • Open Access Article

        1 - Review on the Polysulfone Based Membranes for Separation of Low-Density Lipoprotein from Blood
        Rahim Dehghan Jalal Barzin Behnam Darabi Hamidreza Ghaderi
        Cardiovascular diseases are the most common cause of fatality all over the world. A severe increase of low-density lipoprotein (LDL) concentration in blood is recognized as the main cause of coronary artery disease (CAD) and atherosclerosis. LDL apheresis from blood is More
        Cardiovascular diseases are the most common cause of fatality all over the world. A severe increase of low-density lipoprotein (LDL) concentration in blood is recognized as the main cause of coronary artery disease (CAD) and atherosclerosis. LDL apheresis from blood is one of the extracorporeal options for patients suffering from this disorder which drug therapy is not effective for them. LDL apheresis is classified in cascade filtration and adsorption-based methods. In this study further reviewing all LDL apheresis techniques, polysulfone (PSU) membranes for selective adsorption of LDL were investigated. By inspiring from inherent LDL receptor (LDLR) of body, different methods including heparinization of PSU membrane by various methods such as chloromethylation, treatment with ammonia plasma and co-deposition of polydopamine and polyethyleneimine can be used for adsorption of LDL from the blood. Also, membrane ionic glycosylation by click chemistry and grafting of alginate sulfate on the surface of PSU membrane to adsorption of LDL were reviewed. To investigate surface modification accuracy, different analyses such as X-ray photo spectroscopy (XPS), Attenuated total reflectance Fourier transform infrared (ATR-FTIR), -Potential and water contact angle are used. Blood compatibility is another factor for the development of these membranes for defined application. Manuscript profile
      • Open Access Article

        2 - Investigation of Blood Coagulation Process on Biopolymers and Review on the Hemocompatibility Evaluation Methods
        Rahim Dehghan Jalal Barzin Seyed Hossein  Abtahian Behnam Darabi Hamidreza Ghaderi
        The use of biopolymers in the development of biomedical devices has extended in recent years. These devices are including prosthetic heart valves catheter, cardiovascular stents, artificial arteries, peacemakers, hemodialysis membranes, etc. Hemocompatibility is taken i More
        The use of biopolymers in the development of biomedical devices has extended in recent years. These devices are including prosthetic heart valves catheter, cardiovascular stents, artificial arteries, peacemakers, hemodialysis membranes, etc. Hemocompatibility is taken into account as one of the essential cases of biopolymers for biomedical applications. Knowing biopolymer-blood interaction is very considerable for the development of a hemocompatible biopolymer. Various factors can undergo the hemocompatibility of biopolymers. Surface properties such as hydrophilicity, surface energy, and electrostatic charge are the most important factor for the control of hemocompatibility. In this study, further blood coagulation mechanism on the biopolymers, evaluation methods of hemocompatibility is investigated. Methods include protein adsorption which is the first phenomenon of the blood coagulation process, investigation of kallikrein activity which evaluates intrinsic coagulation pathway, assessment of coagulation times such as thrombin time (TT), prothrombin time (PT) and activated partial thromboplastin time (APTT) which monitor extrinsic, intrinsic and common pathway of blood coagulation, hemolysis of erythrocytes, microscopy analysis of cell adhesion, platelet adhesion and activation. Change in platelet morphology is one of the main criteria for the investigation of blood compatibility. Finally, a hemocompatible polymer should pass all mentioned blood compatibility analyses. Herein, besides i Manuscript profile