مروری بر کاربرد الکترولیت¬های پلیمری با قابلیت انتقال تک یون در باتری¬های لیتیومی
محورهای موضوعی : پلیمرها در انرژی و کاربردهای بهداشتی و محیطیمهرناز خسروی نژاد 1 , مارال قهرمانی 2 *
1 - گروه مهندسی پلیمریزاسیون، دانشگاه تربیت مدرس، تهران، ایران
2 - گروه مهندسی پلیمریزاسیون، دانشگاه تربیت مدرس، تهران، ایران
کلید واژه: باتری لیتیومی, الکترولیت¬های پلیمری, رسانای تک یون, عدد انتقال یون, رسانایی یونی,
چکیده مقاله :
باتریهای لیتیومی به عنوان یکی از پیشرفتهترین باتریهای قابل شارژ امروزه در کاربردهای مختلفی مورد استفاده قرار میگیرند. الکترولیت به عنوان یکی از اجزای اصلی باتری لیتیومی به انواع مختلفی مانند الکترولیت مایع، جامد و الکترولیت پلیمری تقسیم میشود. الکترولیتهای پلیمری در نقش یکی از اجزای اصلی این باتریها، جایگزین مناسبی برای برطرف کردن مشکلات ایمنی الکترولیتهای مایع هستند. در نتیجه، با استفاده از الکترولیتهای پلیمری طول عمر باتری افزایش مییابد. اگرچه این الکترولیتها دارای نقاط ضعفی مانند عدد انتقال یون لیتیوم و رسانایی یونی پائین و سازگاری ضعیف با الکترودها هستند. یکی از راهکارها به منظور حل چالشهای ذکر شده، استفاده از الکترولیتهای پلیمری با قابلیت انتقال تک یون است. الکترولیتهای پلیمری با قابلیت انتقال تک یون، از یک ستون فقرات پلیمری با شاخههای جانبی حاوی گروههای عاملی آنیونی تشکیل شده که حرکت آزاد یون لیتیوم را تسهیل میکند. الکترولیتهای رسانای تک یون را به انواع مختلفی مانند مواد بر پایه سولفونیل ایمید، کربوکسیلات، سولفونات، بور و پلییورتان تقسیمبندی نمود. استفاده از این الکترولیتها به عنوان یک روش موثر و مطلوب برای افزایش طول عمر باتریها در نظر گرفته میشود. با توجه به اهمیت این موضوع، در این تحقیق مروری بر الکترولیتهای پلیمری با قابلیت انتقال تک یون مورد استفاده در نسلهای بعدی باتریهای لیتیومی انجام خواهد شد.
Lithium batteries as one of the most advanced rechargeable batteries are used in various applications today. Electrolytes are one of the main components of lithium batteries and are divided into different types such as liquid electrolyte, solid electrolyte, and polymer electrolyte. Polymer electrolytes, as one of the main components of these batteries, are a suitable alternative to solve the safety problems of liquid electrolytes. As a result, using polymer electrolytes increases battery life. However, these electrolytes have disadvantages such as lithium-ion transfer number low ionic conductivity, and poor compatibility with electrodes. One of the solutions to solve the mentioned challenges is to use polymer electrolytes with the ability to transfer single ions. Polymer electrolytes with the ability to transfer single ions consist of a polymer backbone with side branches containing anionic functional groups that facilitate the free movement of lithium ions. Single-ion conductive electrolytes can be divided into different types such as materials based on sulfonyl imide, carboxylate, sulfonate, boron, and polyurethane materials. The use of these electrolytes is considered an effective and desirable way to increase the lifespan of batteries. Due to the importance of this issue, this research will review polymer electrolytes with the ability to transfer single ions used in the next generations of lithium batteries.
1. Jamalpour S., Ghahramani M., Ghaffarian S. R., Javanbakht M., The Effect of Poly (Hydroxyl Ethyl Methacrylate) on the Performance of PVDF/P¬(MMA-co-HEMA) Hybrid Gel Polymer Electrolytes for Lithium Ion Battery Application, Polymer, 195, 122427, 2020.
2. Lingua G., Grysan P., Vlasov P. S., Verge P., Shaplov A. S., Gerbaldi C., Unique Carbonate-Based Single Ion Conducting Block Copolymers Enabling High-Voltage, All-olid-state Lithium Metal Batterie, Macromolecules, 54, 6911-6924, 2021.
3. Lu J., Chen Z., Pan F., Cui Y., Amine K., High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries, Electrochemical Energy Reviews, 1, 35-53, 2018.
4. Deng D., Li‐Ion Batteries: Basics, Progress, and Challenges, Energy Science & Engineering, 3, 385-418, 2015.
5. Voelker P., Scientific T., Trace Degradation Analysis of Lithium-Ion Battery Components, R&D Magazinde, 2014.
6. Liu Y. K., Zhao C. Z., Du J., Zhang X. Q., Chen A. B., Zhang Q., Research Progresses of Liquid Electrolytes in Lithium‐Ion Batteries, Small, 19, 2205315, 2023.
7. Zhu Y. S., Wang X. J., Hou Y. Y., Gao X. W., Liu L. L., Wu Y. P., Shimizu M., A New Single-Ion Polymer Electrolyte Based on Polyvinyl Alcohol for Lithium Ion Batteries, Electrochimica Acta, 87, 113-118, 2013.
8.Cao C., Zhong Y., Shao Z., Electrolyte Engineering for Safer Lithium‐Ion Batteries, A Review, Chinese Journal of Chemistry, 41, 1119-1141, 2023.
9. Yang Y., Li W., Zhou N., Shen J., Design and Construction of Cross-Linked PEO with the Integration of Helical Polyurethane as an Advanced All-Solid-State Polymer Electrolyte for Lithium Batteries, Journal of Chemical Education, 97, 3758-3765, 2020.
10. Merrill L. C., Chen X. C., Zhang y., Ford H. O., Polymer–Ceramic Composite Electrolytes for Lithium Batteries: A Comparison Between the Single-Ion-Conducting Polymer Matrix and Its Counterpart, ACS Applied Energy Materials, 3, 8871-8881, 2020.
11. Guan T., Rong Z., Cheng F., Zhang W., Chen J., UV-Cured Interpenetrating Networks of Single-Ion Conducting Polymer Electrolytes for Rechargeable Lithium Metal Batteries, ACS Applied Energy Materials, 3, 12532-12539, 2020.
12. Aziz S. B., Woo T. J., Kadir M., Ahmed H. M., A Conceptual Review on Polymer Electrolytes and Ion Transport Models, Journal of Science: Advanced Materials and Devices, 3, 1-17, 2018.
13. https://www.maximizemarketresearch.com/market-report/solid-electrolyte market/147478/. 14. Li M., Wang C., Davey K., Li J., Li G., Zhang S., Mao J., Guo Z., Recent Progress in Electrolyte Design for Advanced Lithium Metal Batteries, SmartMat, 2023.
15. Krause C. H., Butzelaar A. J., Diddens D., Dong D., Théato P., Bedrov D., Hwang B. J., Winter M., Brunklaus G., Quasi-Solid Single Ion Conducting Polymer Electrolyte Membrane Containing Novel Fluorinated Poly (Arylene Ether Sulfonimide) for Lithium Metal Batteries, Journal of Power Sources, 484, 229267, 2021.
16. Porcarelli L., Shaplov A. S., Bella F., Nair J. R., Mecerreyes D., Gerbaldi C., Single-Ion Conducting Polymer Electrolytes for Lithium-Metal Polymer Batteries that Operate at Ambient Temperature, ACS Energy Letters, 1, 678-682, 2016.
17. Yuan, H., Luan J., Yang Z., Zhang J., Wu Y., Lu Z., Liu H., Single lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-state Lithium Metal Batteries, ACS applied materials & interfaces, 7249-7256, 2020.
18. Zhu J., Zhang Z., Zhao S., Westover A. S., Belharouak I., Cao P. F., Single‐Iion Conducting Polymer Electrolytes for Solid‐State Lithium–Metal Batteries: Design, Performance, and Challenges, Advanced Energy Materials, 11, 2003836, 2021.
19. Hu Z., Zhang Y., Fan W., Li X., Huo S., Jing X., Bao W., Zhang Y., Cheng H., Flexible, High-Temperature-Resistant, Highly Conductive, and Porous Siloxane-Based Single-Ion Conducting Electrolyte Membranes for Safe and Dendrite-Free Lithium-Metal Batteries, Journal of Membrane Science, 668, 121275, 2023.
20. Luo G., Yuan B., Guan T., Cheng F., Zhang W., Chen J., Synthesis of Single Lithium-Ion Conducting Polymer Electrolyte Membrane for Solid-State Lithium Metal Batteries, ACS Applied Energy Materials, 2, 3028-3034, 2019.
21. Du D., Hu X., Zeng D., Zhang Y., Sun Y., Li J., Cheng H., Water-Insoluble Side-Chain-Grafted Single Ion Conducting Polymer Electrolyte for Long-Term Stable Lithium Metal Secondary Batteries, ACS Applied Energy Materials, 3, 1128-1138, 2019.
22. Chen Y., Ke H., Zeng D., Zhang Y., Sun Y., Cheng H., Superior Polymer Backbone with Poly (Arylene Ether) over Polyamide for Single Ion Conducting Polymer Electrolytes, Journal of membrane science, 525, 349-358, 2017.
23. Chen Y., Tian Y., Li Z., Zhang N., Zeng D., Xu G., Zhang Y., Sun Y., Ke H., Cheng H., An AB Alternating Diblock Single Ion Conducting Polymer Electrolyte Membrane for All-Solid-State Lithium Metal Secondary Batteries, Journal of membrane science, 566, 181-189, 2018.
24. Ma Q., Zhang H., Zhou C., Zheng L., Cheng P., Nie J., Feng W., Hu Y. S., Li H., Huang X., Chen L, Armand M, Zhou Z, Single Lithium‐Ion Conducting Polymer Electrolytes Based on a Super‐Delocalized Polyanion, Angewandte Chemie International Edition, 55, 2521-2525, 2016.
25. Porcarelli L., Shaplov A. S., Salsamendi M., Nair J. R., Vygodskii Y. S., Mecerreyes D., Gerbaldi C., Single-Ion Block Copoly (ionic liquid)¬s as Electrolytes for All-Solid State Lithium Batteries, ACS applied materials & interfaces, 8, 10350-10359, 2016.
26. Li Z., You Y., Liang X., Wang P., Zhang Z., Du X., Liu B., Sun Z., Hu W., A Single Ion Polymer Electrolyte via Copolymerization of Lithium (4-Styrenesulfonyl)(Trifluoromethanesulfonyl) Imide and Allyl Poly (Aryl Ether Ketone) Enables Safe Lithium Ion Batteries, Applied Surface Science, 611, 155363, 2023.
27. Lee J., Kim S., Kwon H., Jo S., Ryu D. Y., Choi U. H., Kim B. S., Single-Ion-Conducting Polyether Electrolytes via Orthogonal Postpolymerization Modification, Macromolecules, 56, 7520-7531, 2023. 28. Rolland J., Poggi E., Vlad A., Gohy J. F., Single-Ion Diblock Copolymers for Solid-State Polymer Electrolytes, Polymer, 68, 344-352, 2015.
29. Zhang M., Yu S., Mai Y., Zhang S., Zhou Y., A Single-Ion Conducting Hyperbranched Polymer as a High Performance Solid-State Electrolyte for Lithium Ion Batteries, Chemical Communications, 55, 6715-6718, 2019.
30. Dou S., Zhang S., Klein R. J., Runt J., Colby R. H., Synthesis and Characterization of Poly (Ethylene Glycol)-Based Single-Ion Conductors, Chemistry of materials, 18, 4288-4295, 2006.
31. Shao Z., Jannasch P., Single Lithium-Ion Conducting Poly (Tetrafluorostyrene Sulfonate)–Polyether Block Copolymer Electrolytes, Polymer Chemistry, 8, 785-794, 2017.
32. Nederstedt H., Jannasch P., Single-Ion Conducting Polymer Electrolytes with Alternating Ionic Mesogen-Like Moieties Interconnected by Poly (Ethylene Oxide) Segments, Polymer, 177, 231-240, 2019.
33. Panda D. K., Maity K., Palukoshka A., Ibrahim F., Saha S., Li+ Ion-Conducting Sulfonate-Based Neutral Metal–Organic Framework, ACS sustainable chemistry & engineering, 7, 4619-4624, 2019.
34. Cai Y., Wu H., Yan W., Yu Z., Ma W., Liu C., Zhang Q., Jia X., A Stretchable and Highly Conductive Sulfonic Pendent Single-Ion Polymer Electrolyte Derived from Multifunctional Tri-Block Polyether, ACS Applied Polymer Materials, 3, 3254-3263, 2021.
35. He Y., Wang J., Zhang Y., Huo S., Zeng D., Lu Y., Liu Z., Wang D., Cheng H., Effectively Suppressing Lithium Dendrite Growth via an es-LiSPCE Single-Ion Conducting Nano Fiber Membrane, Journal of materials chemistry A, 8, 2518-2528, 2020.
36. Nguyen T. K. L., Lopez G., Iojoiu C., Bouchet R., Ameduri B., Novel Single-Ion Conducting Electrolytes Based on Vinylidene Fluoride Copolymer for Lithium Metal Batteries, Journal of Power Sources, 498, 229920, 2021.
37 Guzmán‐González G., Vauthier S., Alvarez‐Tirado M., Cotte S., Castro L., Guéguen A., Casado N., Mecerreyes D., Single‐Ion Lithium Conducting Polymers with High Ionic Conductivity Based on Borate Pendant Groups, Angewandte Chemie, 134, e202114024, 2022.
38. Liang S., Choi U. H., Liu W., Runt J., Colby R. H., Synthesis and Lithium Ion Conduction of Polysiloxane Single-Ion Conductors Containing Novel Weak-Binding Borates, Chemistry of Materials, 24, 2316-2323, 2012.
39. Lian F., Guan H. y., Wen Y., Pan X. r., Polyvinyl Formal Based Single-Ion Conductor Membranes as Polymer Electrolytes for Lithium Ion Batteries, Journal of membrane science, 469, 67-72, 2014.
40. Deng K., Wang S., Ren S., Han D., Xiao M., Meng Y., Network Type sp3 Boron-Based Single-Ion Conducting Polymer Electrolytes for Lithium Ion Batteries, Journal of Power Sources, 360, 98-105, 2017.
41. Liu K., Jiang S., Dzwiniel T. L., Kim H. K., Yu Z., Dietz Rago N. L., Kim J. J., Fister T. T., Yang J., Liu Q., Molecular Design of a Highly Stable Single-Ion Conducting Polymer Gel Electrolyte, ACS applied materials & interfaces, 12, 29162-29172, 2020.
42. Wang X., Liu Z., Kong Q., Jiang W., Yao J., Zhang C, Cui G., A Single-Ion Gel Polymer Electrolyte Based on Polymeric Lithium Tartaric Acid Borate and Its Superior Battery Performance, Solid State Ionics, 262, 747-753, 2014.
43. Deng K., Guan T., Liang F., Zheng X., Zeng Q., Liu Z., Wang G., Qiu Z., Zhang Y., Xiao M., Flame-Retardant Single-Ion Conducting Polymer Electrolytes Based on Anion Acceptors for High-Safety Lithium Metal Batteries, Journal of Materials Chemistry A, 9, 7692-7702, 2021.
44. Lv Z., Tang Y., Dong S., Zhou Q., Cui G., Polyurethane-Based Polymer Electrolytes for Lithium Batteries: Advances and Perspectives, Chemical Engineering Journal, 430, 132659, 2022.
45. Porcarelli L., Manojkumar K., Sardon H., Llorente O., Shaplov A. S., Vijayakrishna, K.; Gerbaldi, C.; Mecerreyes, D., Single Ion Conducting Polymer Electrolytes Based on Versatile Polyurethanes, Electrochimica Acta, 241, 526-534, 2017.
46. Wang N., Chen X., Sun Q., Song Y., Single-Ion Conducting Polymer Electrolytes Based on Random Polyurethane–Urea with Different Diisocyanate Structures for Lithium Batteries, ACS Applied Energy Materials, 5, 4743-4754, 2022.
47. Andersson R., Hernández G., See J., Flaim T. D., Brandell D., Mindemark J., Designing Polyurethane Solid Polymer Electrolytes for High-Temperature Lithium Metal Batteries, ACS Applied Energy Materials, 5, 407-418, 2022.
48. Fei Y., Liu S., Long Y., Lu L., He Y., Ma X., Deng Y., New Single Lithium Ion Conducting Polymer Electrolyte Derived from Delocalized Tetrazolate Bonding to Polyurethane, Electrochimica Acta, 299, 902-913, 2019.
49. Wang N., Qin D., Sun Q., Chen X., Song Y., Xin T., Single-Ion Conducting Polyurethane-Ester Solid Polymer Electrolyte Membrane toward Lithium Metal Batteries, ACS Applied Polymer Materials, 5, 2607-2616, 2023.
50. Wang N., Chen X., Sun Q., Song Y., Xin T., Fast Li+ Transport Polyurethane-Based Single-Ion Conducting Polymer Electrolyte with Sulfonamide Side chains in the Hard Segment for Lithium Metal Batteries, ACS Applied Materials & Interfaces, 2023.