مروری بر شبکه های پلییورتان – اپوکسی و نانوکامپوزیت آنها
محورهای موضوعی : پليمرها و نانوفناوری
1 - گروه پليمر
کلید واژه: اپوکسی, پلییورتان, میرایی, حافظه شکلی, کامپوزیت,
چکیده مقاله :
با نگاهی گذرا به پلیمرهای مورد استفاده در صنایع، میتوان دریافت که اپوکسی یکی از پرکاربردترین آنهاست. استحکام مکانیکی بالا، مقاومت خوب نسبت به مواد شیمیایی و سهولت کاربرد، این ماده را به گزینهای مناسب برایتولید بسیاری از محصولات نظیر چسبها، کفپوشها، عایقها و غیره تبدیل کرده است. با این حال در بسیاری از مواقع، مقاومت کم اپوکسی نسبت به ضربه منجر به ایجاد محدودیتهایی در به کارگیری این ماده میشود. از طرفی دیگر، پلییورتان پلیمری نرم و منعطف است که ذاتاً دارای خواص میرایی و حافظه شکلی است. این پلیمر نسبت به اپوکسی مقاومت بالایی در برابر ضربه، ساییدگی یا خراش از خود نشان میدهد. بر این اساس انتظار میرود که با ایجاد شبکه این دو پلیمر بتوان به خواص مکانیکی، میرایی و حافظه شکلی مطلوبی دست یافت. در این مطالعه سعی بر آن شده است که ضمن بررسی اهداف ساخت این دسته از شبکهها، راه های تقویت آنها و اثراتی که بر خواص مکانیکی، میرایی یا حافظه شکلی داشتهاند مورد ارزیابی قرار گیرد.
-
1. Domun N., Hadavinia H., Zhang T., Sainsbury T., Liaghat G. H., Vahid, S., Improving the Fracture Toughness and the Strength of Epoxy Using Nanomaterials–a Review of the Current Status., Nanoscale 7, 10294-10329, 2015.
2.Raymond M.P., BuiV.T., Epoxy/Castor Oil Graft Interpenetrating Polymer Networks., Journal of Applied Polymer Science 70, 1649-1659, 1998.
3.Frisch H. L., Frisch K.C., KlempnerD., Glass Transitions of Topologically Interpenetrating Polymer Networks., Polymer Engineering & Science, 14, 646-650, 1974.
4.Hsieh K. H., HanJ.L., Graft Interpenetrating Polymer Networks of Polyurethane and Epoxy. I. Mechanical Behavior., Journal of Polymer Science Part B: Polymer Physics, 28, 623-630, 1990.
5.Yuanchang S., Wu Y, Zhu Z., Modification of Aqueous Acrylic–Polyurethane via Epoxy Resin Postcrosslinking., Journal of Applied Polymer Science 88, 470-475, 2003.
6.Shoubing C., Wang Q., Wang T., Polydimethylsiloxane-Toughened PU/EP IPN Composites Loaded with Carbon Nanotubes: Damping, Thermal, and Mechanical Properties., Journal of Reinforced Plastics and Composites, 30, 1038-1044, 2011.
7. Yuyan L., Modified Shape Memory Epoxy Resin Composites by Blending Activity Polyurethane., Journal of Applied Polymer Science, 127, 3152-3158, 2013.
8. Hsieh K H., HanJ.L.,Graft Interpenetrating Polymer Networks of Polyurethane and Epoxy. I. Mechanical Behavior., Journal of Polymer Science Part B: Polymer Physics, 28, 623-630, 1990.
9. Jiangxuan S., Properties and Morphology of Interpenetrating Polymer Networks Based on Poly (Urethane-Imide) and Epoxy Resin., Macromolecular Research 18, 944-950, 2010.
10. Shoubing C., Dynamic Mechanical Properties of Pastor Oil‐Based Polyurethane/Epoxy Graft Interpenetrating Polymer Network Composites., Journal of Applied Polymer Science 118,1144-1151, 2010.
11. Mariana C., Dynamic Mechanical Analysis of Polyurethane-Epoxy Interpenetrating Polymer Networks, High Performance Polymers 21, 608-623, 2009.
12. Xuesong L., Composition Distribution, Damping and Thermal Properties of the Thickness-Continuous Gradient Epoxy/Polyurethane Interpenetrating Polymer Networks., Applied Sciences 7, 135, 2017.
13. Wei Min H., Yang B., Qing Fu Y., Polyurethane Shape Memory Polymers, CRC Press, 2011.
14. Cong W., Shape Memory Properties of Interpenetrating Polymer Networks (IPNs) Based on Hyperbranched Polyurethane (HBPU)., European Polymer Journal, 123, 109393, 2020.
15. Harekrishna D., Karak N., Shape-Memory Property and Characterization of Epoxy Resin-Modified Mesua ferrea L. Seed Oil-Based Hyperbranched Polyurethane., Journal of Applied Polymer Science, 116,106-115, 2010.
16. Yuyan L.,Modified Shape Memory Epoxy Resin Composites by Blending Activity Polyurethane., Journal of Applied Polymer Science, 127, 3152-3158, 2013.
17.Yongtao Y., Preparation and Characterization of Shape Memory Composite Foams with Interpenetrating Polymer Networks., Smart Materials and Structures, 25, 2016.
18.Katalin C., One-Pot Synthesis and Characterization of Novel Shape-Memory Poly (ε-Caprolactone) Based Polyurethane-Epoxy Co-networks with Diels–Alder Couplings., Polymers, 10.5, 504, 2018.
19. Shoubing C., Wang Q., Wang T., Damping, Thermal, and Mechanical Properties of Montmorillonite Modified Castor Oil-based Polyurethane/Epoxy Graft IPN Composites., Materials Chemistry and Physics ,130, 680-684, 2011.
20. Jia Q. M., Effects of Organophilic Montmorillonite on Hydrogen Bonding, Free Volume and Glass Transition Temperature of Epoxy Resin/Polyurethane Interpenetrating Polymer Networks., European Polymer Journal, 43, 35-42, 2007.
21. Sadegh Imani Y., Kazemi S.A., Öchsner A., Carbon Nanotubes as Reinforcement in Composites: A Review of the Analytical, Numerical and Experimental Approaches., Computational Materials Science, 136, 85-101, 2017.
22. Shoubing C., Wang Q., Wang T., Damping, Thermal, and Mechanical Properties of Carbon Nanotubes Modified Castor Oil-based Polyurethane/Epoxy Interpenetrating Polymer Network Composites." Materials & Design 38, 47-52, 2012.
23. Xia Shaoling., Identical Steady Tribological Performance of Graphene-Oxide-Strengthened Polyurethane/Epoxy Interpenetrating Polymer Networks Derived from Graphene Nanosheet., Polymer, 64,62-68, 2015.
24. Chen Shoubing.,Preparation, Damping and Thermal Properties of Potassium Titanate Whiskers Filled Castor Oil-Based Polyurethane/Epoxy Interpenetrating Polymer Network Composites., Materials & Design, 32, 803-807, 2011.
25. Jabeen Saira., A Review on Polymeric Nanocomposites of Nanodiamond, Carbon Nanotube, and Nanobifiller: Structure, Preparation and Properties." Polymer-Plastics Technology and Engineering, 54, 1379-1409, 2015.