مروری بر سامانههای اپوکسی-گرمانرم: دستهبندی جدیدی از مورفولوژی و تأثیر آن بر چقرمگی
محورهای موضوعی : پليمرها و نانوفناوریشهرزاد مهدیزاده فرسنگی 1 , مهرزاد مرتضایی 2 * , حسن فتاحی 3
1 - گروه مهندسی پلیمر، پژوهشکده مهندسی کامپوزیت، مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران
2 - گروه مهندسی پلیمر، پژوهشکده مهندسی کامپوزیت، مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران
3 - گروه مهندسی پلیمر، پژوهشکده مهندسی کامپوزیت، مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران
کلید واژه: رزین اپوکسی, گرمانرم, چقرمگی, مورفولوژی, آمیزه,
چکیده مقاله :
رزینهای اپوکسی بهدلیل دارا بودن خواص مکانیکی عالی، پایداری حرارتی مناسب و چسبندگی بالا، در صنایع مختلفی همچون هوافضا، خودروسازی و الکترونیک کاربرد گستردهای دارند. با این حال، شکنندگی ذاتی این مواد، محدودیتهایی را در کاربردهای مهندسی ایجاد کرده است. برای بهبود چقرمگی این رزینها، پژوهشهای متعددی با استفاده از افزودنیهای مختلف انجام شده است. ترکیب رزین اپوکسی با پلیمرهای گرمانرم و کنترل مورفولوژی در سطح میکرو و نانو نیز بهعنوان یک راهکار مؤثر شناخته شده است.
این مقاله در ابتدا به بررسی انواع سازوکارهای استحکام و چقرمگی پرداخته و تأثیر افزودن پلیمرهای گرمانرم به رزین اپوکسی را ارائه میدهد. سپس، انواع مورفولوژیهای ایجادشده در سامانههای چندسازه و آلیاژ را بررسی میکند. در این مطالعه، سه نوع مورفولوژی مؤثر (شامل مورفولوژی تکفاز یا جدایی فازی کنترلشده در آلیاژ و آمیزه، مورفولوژی سطح مشترک در چندسازه و مورفولوژی فاز مشترک در چندسازه) برای افزایش چقرمگی مورد بررسی قرار گرفتهاند. همچنین، چالشهای موجود در مهندسی مورفولوژی و تأثیر آن بر خواص نهایی مواد تحلیل شدهاند.
در پایان، مسیرهای پژوهشی آینده برای توسعهی مورفولوژی سامانههای اپوکسی-گرمانرم با چقرمگی بهبودیافته پیشنهاد شدهاند. این پژوهش نشان میدهد که مطالعه، طراحی و کنترل دقیق مورفولوژی میتواند بهطور قابل توجهی عملکرد این مواد را در کاربردهای مهندسی پیشرفته افزایش دهد.
Epoxy resins are extensively utilized across various industries, including aerospace, automotive, and electronics, owing to their outstanding mechanical properties, appropriate thermal stability, and strong adhesion. Nevertheless, the intrinsic brittleness of these materials poses challenges in certain engineering applications. To enhance the toughness of these resins, numerous studies have explored the use of various additives. The integration of epoxy resin with thermoplastic polymers and the manipulation of morphology at the micro and nano scales have also been identified as effective strategies.
This article first explores various mechanisms of strength and toughness and discusses the impact of incorporating thermoplastics into epoxy resin. It then examines the types of morphologies formed in composite and alloy systems. In this study, three effective morphologies (including single-phase morphology or controlled phase separation in alloys and blends, interface morphology in composites, and co-continuous phase morphology in composites) have been investigated to enhance toughness. Furthermore, the challenges in morphology engineering and their effects on the final properties of the materials have been analyzed.
Finally, future research directions for enhancing the morphology of epoxy-thermoplastic systems with improved toughness are suggested. This research illustrates that the study, design, and precise control of morphology can greatly improve the performance of these materials in advanced engineering applications.
1. Zamanian M., Mortezaei M., Salehnia B., & Jam, J. E. Fracture toughness of epoxy polymer modified with nanosilica particles: Particle size effect. Engineering Fracture Mechanics, 97, 193-206. 2013.
2. Akherati Sany, S. R., Mortezaei, M., & Amiri Amraei, I. Improving Fracture Toughness of Epoxy Nanocomposites by Silica Nanoparticles. Iranian Journal of Polymer Science and Technology, 30(1), 3-17. 2017.
3. Kobayashi, T., Ogawa, K., Maeda, R., Wang, P., Kubozono, T., Yoshihara, D., ... & Omiya, M. Quantitative evaluation of crack arrest mechanisms in epoxy/silica nanocomposites. Composites Science and Technology, 261, 111028. 2025.
4. ابریشمی, سوزان, & مقصود. مروری بر شبکه های پلییورتان–اپوکسی و نانوکامپوزیت آنها. پژوهش و توسعه فناوری پلیمر ایران, 6. 2021.
5. Ma, H., Geng, P., Xu, T., Bandaru, A. K., Aravand, A., & Falzon, B. G. Analytical fracture toughness model for multiphase epoxy matrices modified by thermoplastic and carbon nanotube/thermoplastic. Composites Part A: Applied Science and Manufacturing, 177, 107948.2024.
6. Yang, S., Li, R., Zhu, H., Qin, Y., & Huang, C. Review of the state-of-the-art techniques for enhancing the toughness of thermosetting epoxy asphalt. Construction and Building Materials, 449, 137660. 2024.
7. Tangthana-umrung, K., Mahmood, H., Zhang, X., & Gresil, M. Enhancing interlaminar fracture toughness of woven carbon fibre/epoxy composites with engineering thermoplastic and carbon-based nanomaterials. Composite Structures, 282, 115073. 2022.
8. Yao, J., Shi, P., Gao, Y., & Niu, Y. Evolution of phase structure and fracture toughness induced by carbon nanotubes in thermoplastic-toughened epoxy nanocomposites. Journal of Reinforced Plastics and Composites, 44(1-2), 45-55. 2025..
9. Mathis, E., Michon, M. L., Billaud, C., Vergelati, C., Clarke, N., Jestin, J., & Long, D. R. Controlling the morphology in epoxy/thermoplastic systems. ACS Applied Polymer Materials, 4(3), 2091-2104. 2022.
10. Ma, H., Aravand, M. A., & Falzon, B. G. Influence on fracture toughness arising from controlled morphology of multiphase toughened epoxy resins in the presence of fibre reinforcement. Composites science and technology, 217, 109095. 2022.
11. Petrie, E. M. Epoxy adhesive formulations. 2006..
12. باریکانی & هنرکار, رزین های اپوکسی, انجمن علوم و مهندسی پلیمر ایران. چ. اول. 22. 2015.
13. Mi, X., Liang, N., Xu, H., Wu, J., Jiang, Y., Nie, B., & Zhang, D. Toughness and its mechanisms in epoxy resins. Progress in Materials Science, 130, 100977. 2022.
14. Ren, Y., Zhang, L., Xie, G., Li, Z., Chen, H., Gong, H., ... & Luo, J. A review on tribology of polymer composite coatings. Friction, 9, 429-470. 2021.
15. Garg, A. C., & Mai, Y. W. Failure mechanisms in toughened epoxy resins—A review. Composites Science and Technology, 31(3), 179-223. 1988.
16. Kargarzadeh, H., I. Ahmad, and I. Abdullah, Mechanical Properties of Epoxy–Rubber Blends, in Handbook of Epoxy Blends. p. 1-36. 2015.
17. Kausar, A.. Performance of corrosion protective epoxy blend-based nanocomposite coatings: a review. Polymer-Plastics Technology and Materials, 59(6), 658-673. 2020.
18. Brooker, R. D., Kinloch, A. J., & Taylor, A. C.. The morphology and fracture properties of thermoplastic-toughened epoxy polymers. The Journal of Adhesion, 86(7), 726-741. 2010.
19. Bogetti, T.A. & J.W. Gillespie, Two-Dimensional Cure Simulation of Thick Thermosetting Composites. Journal of Composite Materials,. 25(3). 239-273. 2016.
20. Quaresimin, M., Schulte, K., Zappalorto, M., & Chandrasekaran, S.. Toughening mechanisms in polymer nanocomposites: From experiments to modelling. Composites Science and Technology, 123, 187-204. 2016.
21. Salunke, A., Sasidharan, S., Cherukattu Gopinathapanicker, J., Kandasubramanian, B., & Anand, A.. Cyanate ester—epoxy blends for structural and functional composites. Industrial & Engineering Chemistry Research, 60(8), 3260-3277. 2021.
22. Ma, H., Aravand, M. A., & Falzon, B. G. Phase morphology and mechanical properties of polyetherimide modified epoxy resins: A comparative study. Polymer, 179, 121640. 2019.
23. Pena, G., Eceiza, A., Valea, A., Remiro, P., Oyanguren, P., & Mondragon, I. Control of morphologies and mechanical properties of thermoplastic‐modified epoxy matrices by addition of a second thermoplastic. Polymer international, 52(9), 1444-1453. 2003.
24. Puglia, D., Al-Maadeed, M. A. S., Kenny, J. M., & Thomas, S. Elastomer/thermoplastic modified epoxy nanocomposites: The hybrid effect of ‘micro’and ‘nano’scale. Materials Science and Engineering: R: Reports, 116, 1-29. 2017.
25. Wang, Y. Y., & Chen, S. A.. Polymer compatibility: Nylon‐epoxy resin blends. Polymer Engineering & Science, 20(12), 823-829. 1980.
26. Mathis, E., Michon, M. L., Billaud, C., Grau, P., Bocahut, A., Vergelati, C., & Long, D. R. . Thermoset modified with polyethersulfone: characterization and control of the morphology. Journal of Polymer Science, 58(8), 1177-1188. 2020.
27. Quan, D., Alderliesten, R., Dransfeld, C., Murphy, N., Ivanković, A., & Benedictus, R. Enhancing the fracture toughness of carbon fibre/epoxy composites by interleaving hybrid meltable/non-meltable thermoplastic veils. Composite Structures, 252, 112699.2020.
28. Goergen, C., Klingler, A., Grishchuk, S., May, D., Wetzel, B., & Mitschang, P. Novel approach in b-staging of an epoxy resin for development of rCF non-woven prepregs for RTP processing. Key Engineering Materials, 809, 521-526.2019.
29. Saghafi, H., Palazzetti, R., Zucchelli, A., & Minak, G. Influence of electrospun nanofibers on the interlaminar properties of unidirectional epoxy resin/glass fiber composite laminates. Journal of Reinforced Plastics and Composites, 34(11), 907-914.2015.
30. Liu, D., Li, G., Li, B., Luan, Y., Ling, H., & Yang, X. In-situ toughened CFRP composites by shear-calender orientation and fiber-bundle filtration of PA microparticles at prepreg interlayer. Composites Part A: Applied Science and Manufacturing, 84, 165-174.2016.
31. Beylergil, B., Tanoğlu, M., & Aktaş, E. Effect of polyamide-6, 6 (PA 66) nonwoven veils on the mechanical performance of carbon fiber/epoxy composites. Composite Structures, 194, 21-35.2018.
32. Voleppe, Q., Ballout, W., Van Velthem, P., Bailly, C., & Pardoen, T.Enhanced fracture resistance of thermoset/thermoplastic interfaces through crack trapping in a morphology gradient. Polymer, 218, 123497.2021.
33. Jensen, R. E., Palmese, G. R., & McKnight, S. H. Viscoelastic properties of alkoxy silane-epoxy interpenetrating networks. International journal of adhesion and adhesives, 26(1-2), 103-115.2006.