چارچوبهای فلز-آلی در غشاهای کاتالیزگرنوری و چالشهای آن برای تصفیه آب تحت نور مرئی.
محورهای موضوعی : پليمرها و نانوفناوریزهرا ولی زاده 1 , سید محمد حسینی 2 , وحید صفری فرد 3 *
1 - ایران، تهران، دانشگاه علم و صنعت ایران، دانشکده شیمی
2 - ایران، تهران، دانشگاه علم و صنعت ایران، دانشکده شیمی
3 - ایران، تهران، دانشگاه علم و صنعت ایران، دانشکده شیمی
کلید واژه: چارچوب های فلز-آلی, کاتالیزگر نوری, غشاء, تصفیه آب.,
چکیده مقاله :
چارچوبهای فلز-آلی (MOF) بهعنوان موادی با ساختارهای شبکهای متخلخل و خواص شیمیایی قابل تنظیم، امکانات گستردهای را برای فرآیندهای تصفیه آب فراهم میآورند. این مواد بهویژه تحت تابش نور مرئی، بهدلیل تواناییهای منحصر به فردشان در جذب و تبدیل نور به انرژی شیمیایی، میتوانند بهطور مؤثری در حذف آلایندهها و تصفیه آب مورد استفاده قرار گیرند. با این حال، مشکل اصلی MOFها در فرم پودر آنها نهفته است که این فرم، کاربرد عملی آنها را محدود میکند. بهویژه، فرایندهای جداسازی و بازیابی این مواد پودری دشوار و زمانبر است. برای رفع این محدودیتها، روش تثبیت MOFها بر روی بسترهای پلیمری بهعنوان یک راهکار نوآورانه مطرح شده است. این تثبیت به MOFها امکان میدهد تا در قالب غشاهای کاتالیزگر نوری استفاده شوند. غشاهای کاتالیزگر نوری حاوی MOF میتوانند بهطور مؤثری در فرآیند تصفیه آب به کار گرفته شوند. این غشاها از طریق فرآیندهای کاتالیزگری نوری تحت تابش نور مرئی، توانایی تخریب آلایندههای آلی و حذف یونهای فلزی را دارند. این ویژگیها بهویژه در تصفیه آبهای آلوده به مواد شیمیایی و فلزات سنگین، اهمیت فراوانی دارند.این مطالعه بهطور جامع به بررسی عملکرد غشاهای کاتالیزگر نوری حاوی MOF در زمینههای مختلف تصفیه آب پرداخته است.. تحلیلهای انجام شده شامل بررسی تأثیرات مختلف بر روی تخریب آلایندههای آلی و حذف یونهای فلزی با استفاده از این غشاها است. بهویژه، این تحقیق بر بهینهسازی استفاده از انرژی خورشید و افزایش پایداری طولانیمدت این غشاها در فرآیندهای جداسازی تمرکز دارد.
As materials with porous network structures and tunable chemical properties, metal-organic frameworks (MOFs) provide a wide range of possibilities for water treatment processes. These materials can be effectively used in the removal of pollutants and water purification, especially under visible light radiation, due to their unique abilities to absorb and convert light into chemical energy. However, the main problem of MOFs lies in their powder form, which limits their practical application. Especially, the separation and recovery processes of these powder materials are difficult and time-consuming. To solve these limitations, the method of stabilizing MOFs on polymer substrates has been proposed as an innovative solution. This immobilization allows MOFs to be used as photocatalyst membranes. Photocatalyst membranes containing MOF can be effectively used in the water purification process. These membranes have the ability to destroy organic pollutants and remove metal ions through photocatalysis processes under visible light irradiation. These features are especially important in the treatment of water contaminated with chemicals and heavy metals. This study has comprehensively investigated the performance of photocatalyst membranes containing MOF in various fields of water treatment. The analyzes carried out include the investigation of different effects on the degradation of organic pollutants and the removal of metal ions using these membranes. In particular, this research focuses on optimizing the use of solar energy and increasing the long-term stability of these membranes in separation processes.
Tripathy, S.P., et al., Hydrolytically stable citrate capped Fe3O4@ UiO-66-NH2 MOF: A hetero-structure composite with enhanced activity towards Cr(VI) adsorption and photocatalytic H2 evolution. Journal of Colloid and Interface Science, 2022. 606: p. 353-366.
2. Li, S., et al., Facile fabrication of TaON/Bi2MoO6 core–shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(VI) reduction. Chemical Engineering Journal, 2022. 428: p. 131158. 3. Long, Z., et al., Historical development and prospects of photocatalysts for pollutant removal in water. 2020. 395: p. 122599.
4. Xia, Y. and J.J.C. Yu, Reaction: rational design of highly active photocatalysts for CO2 conversion. 2020. 6(5): p. 1039-1040. 5. Giannakoudakis, D.A., et al., Boosting the Photoactivity of Grafted Titania: Ultrasound‐Driven Synthesis of a Multi‐Phase Heterogeneous Nano‐Architected Photocatalyst. 2021. 31(1): p. 2007115.
6. Li, N., et al., Z-Scheme Cdin2s4/Bi2wo6 Heterojunction for Highly Efficient Piezo-Photo Synergetic Performance.
7. Yu, F., et al., Fabrication of recyclable UiO-66-NH2/PVDF hybrid fibrous membrane for Cr(VI) removal in wastewater. Journal of Industrial and Engineering Chemistry, 2023. 123: p. 104-115.
8. Yang, S., et al., Enhancing MOF performance through the introduction of polymer guests. Coordination Chemistry Reviews, 2021. 427: p. 213525.
9. Elimelech, M. and W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. science, 2011. 333(6043): p. 712-717.
10. Pendergast, M.M. and E.M. Hoek, A review of water treatment membrane nanotechnologies. Energy & Environmental Science, 2011. 4(6): p. 1946-1971.
11. Wu, C.-J., et al., Removal of tetracycline by a photocatalytic membrane reactor with MIL-53 (Fe)/PVDF mixed-matrix membrane. Chemical Engineering Journal, 2023. 451: p. 138990.
12. Hu, L., et al., Easily recyclable photocatalyst Bi2WO6/MOF/PVDF composite film for efficient degradation of aqueous refractory organic pollutants under visible-light irradiation. Journal of Materials Science, 2019. 54: p. 6238-6257.
13. Chen, S.S., et al., De Novo synthesis of platinum-nanoparticle-encapsulated UiO-66-NH2 for photocatalytic thin film fabrication with enhanced performance of phenol degradation. Journal of hazardous materials, 2020. 397: p. 122431.
14. Hassan, S.U., et al., Photocatalytic degradation of industrial dye using hybrid filler impregnated poly-sulfone membrane and optimizing the catalytic performance using Box-Behnken design. Chemosphere, 2023. 313: p. 137418.
15. Vinothkumar, K., et al., Strongly co-ordinated MOF-PSF matrix for selective adsorption, separation and photodegradation of dyes. Chemical Engineering Journal, 2022. 428: p. 132561.
16. Jin, L., et al., Electrospinning synthesis of ZIF-67/PAN fibrous membrane with high-capacity adsorption for malachite green. Fibers and Polymers, 2019. 20: p. 2070-2077.
17. Kaur, H., et al., Mercapto-decorated Zn-based metal-organic framework embedded nanofibrous membrane for oxo-anions treatment in aqueous solution. Chemical Engineering Journal, 2022. 443: p. 136212.
18. Kong, N., et al., Enriching Fe3O4@ MoS2 composites in surface layer to fabricate polyethersulfone (PES) composite membrane: the improved performance and mechanisms. Separation and Purification Technology, 2022. 302: p. 122178.
19. Liu, J., et al., Preparation of Ni@ UiO-66 incorporated polyethersulfone (PES) membrane by magnetic field assisted strategy to improve permeability and photocatalytic self-cleaning ability. Journal of Colloid and Interface Science, 2022. 618: p. 483-495.
20. Xing, W., et al., MOFs self-assembled molecularly imprinted membranes with photoinduced regeneration ability for long-lasting selective separation. Chemical Engineering Journal, 2022. 437: p. 135128.
21. Krishnan, S.G., et al., Surface-initiated polymerization of PVDF membrane using amine and bismuth tungstate (BWO) modified MIL-100(Fe) nanofillers for pesticide photodegradation. Chemosphere, 2022. 304: p. 135286.
22. Zhou, S., et al., Self-cleaning loose nanofiltration membranes enabled by photocatalytic Cu-triazolate MOFs for dye/salt separation. Journal of Membrane Science, 2021. 623: p. 119058.
23. Wang, Z., et al., Photocatalytic MOF membranes with two-dimensional heterostructure for the enhanced removal of agricultural pollutants in water. Chemical Engineering Journal, 2022. 435: p. 133870.
24. Zhao, P., et al., Zr-porphyrin metal–organic framework-based photocatalytic self-cleaning membranes for efficient dye removal. Industrial & Engineering Chemistry Research, 2021. 60(4): p. 1850-1858.
25. Xu, M., et al., MOF laminates functionalized polyamide self-cleaning membrane for advanced loose nanofiltration. Separation and Purification Technology, 2021. 275: p. 119150.
26. Lu, W., et al., A self-cleaning and photocatalytic cellulose-fiber-supported “Ag@ AgCl@ MOF-cloth’’membrane for complex wastewater remediation. Carbohydrate polymers, 2020. 247: p. 116691.
27. Li, T., et al., A stable metal-organic framework nanofibrous membrane as photocatalyst for simultaneous removal of methyl orange and formaldehyde from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. 617: p. 126359.
28. Huang, J., et al., Photocatalytic MOF fibrous membranes for cyclic adsorption and degradation of dyes. Journal of Materials Science, 2021. 56: p. 3127-3139.
29. Dhivya, E., et al., Synthesis of titanium based hetero MOF photocatalyst for reduction of Cr(VI) from wastewater. Journal of Environmental Chemical Engineering, 2019. 7(4): p. 103240.
30. Cao, W., et al., Boosting the adsorption and photocatalytic activity of carbon fiber/MoS2-based weavable photocatalyst by decorating UiO-66-NH2 nanoparticles. Chemical Engineering Journal, 2021. 417: p. 128112.
31. Mozia, S., Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Separation and purification technology, 2010. 73(2): p. 71-91.
32. Shi, Y., et al., Photocatalytic membrane in water purification: is it stepping closer to be driven by visible light? Journal of Membrane Science, 2019. 584: p. 364-392.
33. Arbeloa, I.L. and K. Rohatgi-Mukherjee, Solvent effect on photophysics of the molecular forms of rhodamine B. Solvation models and spectroscopic parameters. Chemical physics letters, 1986. 128(5-6): p. 474-479.
34. Issarapanacheewin, S., et al., Photodegradation of organic dyes by CeO2/Bi2WO6 nanocomposite and its physicochemical properties investigation. Ceramics International, 2016. 42(14): p. 16007-16016.
35. Zhang, Y., et al., MIL-101 (Fe) nanodot-induced improvement of adsorption and photocatalytic activity of carbon fiber/TiO2-based weavable photocatalyst for removing pharmaceutical pollutants. Journal of Cleaner Production, 2021. 290: p. 125782.
36. Wu, W., et al., Water flow drived piezo-photocatalytic flexible films: Bi-piezoelectric integration of ZnO nanorods and PVDF. Applied Surface Science, 2020. 517: p. 146119.
37. Erusappan, E., et al., Fabrication of mesoporous TiO2/PVDF photocatalytic membranes for efficient photocatalytic degradation of synthetic dyes. Journal of Environmental Chemical Engineering, 2021. 9(4): p. 105776.
38. Lou, L., et al., Visible light photocatalytic functional TiO2/PVDF nanofibers for dye pollutant degradation. Particle & Particle Systems Characterization, 2019. 36(9): p. 1900091.
39. Yuan, N., et al., Insights into functionalization of metal-organic frameworks using in situ NMR spectroscopy. Scientific Reports, 2018. 8(1): p. 17530.
40. Yu, X., et al., Microwave-assisted hydrothermal synthesis of Sn3O4 nanosheet/rGO planar heterostructure for efficient photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2018. 227: p. 470-476.
41. Chen, G., et al., Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity. Nanoscale, 2015. 7(7): p. 3117-3125.
42. Han, S., et al., Assembling Sn3O4 nanostructures on a hydrophobic PVDF film through metal-F coordination to construct a piezotronic effect-enhanced Sn3O4/PVDF hybrid photocatalyst. Nano Energy, 2020. 72: p. 104688.
43. Kumar, V., et al., Metal-organic frameworks for photocatalytic detoxification of chromium and uranium in water. Coordination Chemistry Reviews, 2021. 447: p. 214148.
44. Du, X.-D., et al., Robust photocatalytic reduction of Cr(VI) on UiO-66-NH2 (Zr/Hf) metal-organic framework membrane under sunlight irradiation. Chemical Engineering Journal, 2019. 356: p. 393-399.
45. Ji, W., et al., Electrospinning preparation of nylon-6@ UiO-66-NH2 fiber membrane for selective adsorption enhanced photocatalysis reduction of Cr(VI) in water. Chemical Engineering Journal, 2023. 451: p. 138973.
46. Lu, W., et al., Cellulose-based electrospun nanofiber membrane with core-sheath structure and robust photocatalytic activity for simultaneous and efficient oil emulsions separation, dye degradation and Cr(VI) reduction. Carbohydrate Polymers, 2021. 258: p. 117676.
47. Saha, D., T.J. Hoinkis, and S.E. Van Bramer, Electrospun, flexible and reusable nanofiber mat of graphitic carbon nitride: Photocatalytic reduction of hexavalent chromium. Journal of colloid and interface science, 2020. 575: p. 433-442.