• OpenAccess
    • List of Articles کننده

      • Open Access Article

        1 - The Origin and Application of Flame Retardant Biobased Polymers in Cellulosic Industry
        mehrnoosh tavakoli ali ghasemian
        Nowadays, In order to reduce environmental footprint, polymer industry has started to develop new materials based on natural resources. Two kinds of biobased polymers can be developed. The first one corresponds to macromolecular structures existing in nature as cellulos More
        Nowadays, In order to reduce environmental footprint, polymer industry has started to develop new materials based on natural resources. Two kinds of biobased polymers can be developed. The first one corresponds to macromolecular structures existing in nature as cellulose, lignin, starch, alginate and so-on that most of them are probably the ones that derived from well-established cellulosic industries. Nevertheless, the thermal stability of these rich in oxygen structures are limited, they release relatively little heat during burning and are often able to char. Other biobased polymers are made up of molecules synthesized from natural resources. Not only polymers but also all additives used to modify their properties can be biobased to meet sustainable development. Intensive research is devoted to develop flame retardant biobased polymers from various raw resources. These flame retardant biobased polymers can be used directly as they are, alone or as a component of a more complex system. This is especially true when the molecules are phosphorus-rich as DNA or phytic acid or charring as lignin. All the efforts reviewed in this paper, show that a major objective is to develop 100 % biobased materials suitable for applications requiring high flame retardancy level. Different biomolecules from the cellulosic industry are also the most promising in flame retardancy. Manuscript profile
      • Open Access Article

        2 - -
        Zohre Taherkhani
      • Open Access Article

        3 - -
        zohre taherkhani
      • Open Access Article

        4 - A Review on the Mechanical Properties of Carbon Nanotubes Reinforced Polymer Composites
        Ahdieh Amjadi Fereshteh Barragh Jam
        Advances in the synthesis and industrial production of carbon nanomaterials, particularly carbon nanotubes (CNTs) have been widely used in the polymer materials industry in the past few decades, leading to the creation of a group of carbon nanotube-reinforced polymer co More
        Advances in the synthesis and industrial production of carbon nanomaterials, particularly carbon nanotubes (CNTs) have been widely used in the polymer materials industry in the past few decades, leading to the creation of a group of carbon nanotube-reinforced polymer composites that exhibit the potential to be used in several applications, such as military, transportation, aerospace, automotive, and sports equipment. The advantageous thermal, electrical, and mechanical properties of CNTs, in conjunction with their low density, which encourages researchers to use them in making polymer composites. Polymeric composites have been welcomed by many researchers and industrialists due to their special properties including low weight, favorable mechanical properties and diverse production processes compared to other types of composites and other engineering materials. On the other hand, CNTs are unique as mechanical reinforcement components for structural applications due to their nanometer dimensions and extraordinary strength. Therefore, in this review study, an attempt has been made to examine the researches carried out in the field of mechanical properties of polymer composites reinforced with CNT. The implications of several factors affecting mechanical properties of CNT reinforced polymer composites such as amount, shape, and contact area of the reinforcing agents with the polymer matrix, have been highlighted. Manuscript profile