• OpenAccess
    • List of Articles گرما

      • Open Access Article

        1 - -
        Ehsan Alikhani
      • Open Access Article

        2 - -
        mina alizade
      • Open Access Article

        3 - Shape memory polymers: Structure, mechanism, functionality, and applications
        Hamidreza Haydari Marziyeh Hosseini
        In the last three decades, many researches have been conducted in the field of shape memory polymers, and in the past few years, the interest in research in this field has received a lot of attention. In this study, a comprehensive and complete review of the structure, More
        In the last three decades, many researches have been conducted in the field of shape memory polymers, and in the past few years, the interest in research in this field has received a lot of attention. In this study, a comprehensive and complete review of the structure, mechanism, model and applications of this category of polymers has been done. In general, the mechanisms of shape memory polymers are divided into three groups: direct thermal induction, indirect thermal induction, and optical induction, and each has its own switch unit that controls the shape structure. These switches have amorphous and semi-crystalline phase, which are defined in two phase and molecular levels. Also, increasing the mechanical properties, including the strength and toughness of shape memory polymers, is of great importance, which can increase their efficiency. Shape memory polymers can be used in medical, aerospace, textile and other industries. In the textile industry, the electrospinning process is used as a simple and efficient method for the preparation of shape memory polymer fibers and the development of their structure, and the mechanism and method of preparation of these fibers will be investigated. In the last three decades, many researches have been conducted in the field of shape memory polymers, and in the past few years, the interest in research in this field has received a lot of attention. In this study, a comprehensive and complete review of the structure, mechanism, model and applications of this category of polymers has been done. Manuscript profile
      • Open Access Article

        4 - Crystallinity of polymers determined by differential scanning calorimetry (II)
        Mina Alizadehaghdam
        Differential scanning calorimetry (DSC) is widely used to determine the crystallinity of semicrystalline polymers. In the two-phase model, the measured heat of fusion is compared to the melting enthalpy of a completely crystalline polymer to get the crystallinity degree More
        Differential scanning calorimetry (DSC) is widely used to determine the crystallinity of semicrystalline polymers. In the two-phase model, the measured heat of fusion is compared to the melting enthalpy of a completely crystalline polymer to get the crystallinity degree. Fusion heat of a polymeric sample is identified by area under the melting endotherm and a baseline. A correct baseline is heat capacity of the semicrystalline sample. It varies with both temperature and crystallinity and is difficult to evaluate. Enthalpy of a process is a state-function quantity and is independent of the process path. In polymer melting, temperature increase and fusion process occur simultaneously. This makes evaluation of the fusion heat challenging. Herein, alternative paths are supposed in which temperature increase and fusion process occur separately and sequentially. This leads to a convenient enthalpy evaluation. Two alternative paths can be defined: first, polymer melts at a constant temperature which is followed by temperature increase of the melt; second, polymer temperature increases without any change in crystallinity degree which is followed by polymer melting at a constant temperature. Lastly, an enthalpy deficiency due to the amorphous-crystalline interface and an excess enthalpy due to the defects present in crystalline regions are investigated how to affect the crystallinity. Manuscript profile
      • Open Access Article

        5 - A Review of Thermal Actuation Methods for Thermally-Activated Twisted and Coiled Polymer Actuators
        Mohammadamir Bakhshi Ali Moazemi Goudarzi Fattaneh Morshedsolouk
        Recently, a new type of artificial muscle called thermally activated twisted and coiled polymer actuators (TCPAs) has garnered significant attention. These actuators are primarily made from fishing lines or sewing thread, and when actuated by heat, they can contract alo More
        Recently, a new type of artificial muscle called thermally activated twisted and coiled polymer actuators (TCPAs) has garnered significant attention. These actuators are primarily made from fishing lines or sewing thread, and when actuated by heat, they can contract along their length to produce linear displacement. The low production cost, silent operation, high power-to-weight ratio, and the ability to generate significant displacement in response to thermal stimuli are among the advantages that have made these actuators more appealing compared to other conventional actuators. They are thus emerging as a suitable option for various applications, such as robotics, smart textiles, energy harvesting systems, and more. These actuators (TCPAs) operate by leveraging the expansion and contraction properties of polymer fibers, which are initially twisted by an electric motor and then coiled into a spring-like structure. This construction method enhances the strength and efficiency of the TCPAs. Additionally, these actuators can maintain their performance in diverse environments, including underwater and high-temperature settings. This review explores the fabrication methods, underlying principles, and thermal actuating techniques of these actuators. It also discusses their innovative and emerging applications. Furthermore, the study addresses the challenges in exploiting this technology and proposes possible solutions to optimize their performance. Manuscript profile