Epoxy Nanocomposites Reinforced with Metal-Organic Framework Nanoparticles: Study and Analysis of Morphology, Mechanical Properties, and Thermal Degradation
Subject Areas :Mohammad Hossein Karami 1 * , Omid Moeini Jazni 2 * , Alireza Bagheri 3
1 - Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, P.O. Box 81746
2 - Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
3 - Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, P.O. Box 81746
Keywords: Epoxy Resin, Metal-Organic Frameworks, Morphology, Mechanical Properties, Thermal Degradation.,
Abstract :
Epoxy resin, as one of the thermosetting polymers, has extensive applications in various industries, including automotive, electronics, and construction. Its strong network structure makes it brittle, which is why researchers are seeking to enhance its toughness using polymeric nanoparticles. Epoxies and metal-organic frameworks (MOFs) are utilized in various industries due to their high adhesive properties and chemical resistance. MOFs are compounds composed of metal ions and organic ligands that are utilized in engineering fields due to their porous structure and high surface area. This study demonstrates that the use of modified metal-organic frameworks in epoxy resin and epoxy nanocomposites positively impacts the morphology and dispersion of nanoparticles. The presence of amine and methacrylate groups contributes to improved compatibility and reduced surface defects. Additionally, the incorporation of graphene oxide and melamine nanofillers has aided in enhancing the dispersion of nanoparticles. The results of this research emphasize the importance of optimizing surface properties and the appropriate selection of fillers, which can serve as a foundation for future investigations in this field. This study examines the effects of metal-organic frameworks and modified metal-organic frameworks on the morphology, mechanical properties, thermal stability, and thermal degradation of epoxy resin and epoxy nanocomposites. This study also examines recent research and advancements in epoxy nanocomposites containing metal-organic frameworks and highlights significant results in their applications.
1. Nie, S., Zhao, Z., Zhai, W., Yang, J., Zhang, H., Zhao, D., and Wang, J., Interfacial property optimization through the co-deployment of MOF-derived nickel phyllosilicate and DOPO: Effective reinforcement and flame retardancy of epoxy resin, Compos. Part B: Eng., 289, 111947, 2025.
2. Yu, S., Cheng, C., Li, K., Wang, J., Wang, Z., Zhou, H., Wang, W., Zhang, Y., and Quan, Y., Fire-safe epoxy composite realized by MXenes based nanostructure with vertically arrayed MOFs derived from interfacial assembly strategy, Chem. Eng. J., 465, 143039, 2023.
3. Zhao, M., Sun, Z., Guo, J., Qu, Q., Jiang, T., Wang, G., and Wang, J., Strengthening and Toughening Epoxy Composites by Constructing MOF/CF Multi-Scale Reinforcement, Coatings, 13, 170, 2023.
4. Li, X., Liu, H., Meng, S., Wang, F., Mei, T., Cai, X., and Ran, Y., Smart epoxy coating: g-C3N4 nanosheets loaded MOFs for enhanced anti-corrosion and UV resistance, Chem. Eng. J., 488, 150731, 2024.
5. Solaimany, F., Mardani, S., Haddadi, S. A., Mekonnen, T. H., and Ramezanzadeh, B., ZIF8/hydroxyapatite sheets: A sustainable triple-ligand MOF-based nanocarrier for enhancing the self-healing capabilities of the epoxy composite, J. Mater. Res. Technol., 33, 5587-5606, 2024.
6. Zhang, G., Dong, Y., Yao, M., Cui, Y., Meng, W., Wang, S., Qu, H., and Xu, J., Preparation of a MOF flame retardant containing phosphazene ring and its effect on the flame retardant of epoxy resin, Reactive Funct. Polym., 191, 105670, 2023.
7. Lin, J., Wang, K., Li, J., et al., Growing metal–organic framework nanoparticles on short carbon fibers to improve flame retardancy, smoke suppression and mechanical properties of the flame retardant epoxy composites, J. Mater. Sci., 56, 19899–19914, 2021.
8. Zhang, J., Li, Z., Qi, X., Zhang, W., and Wang, D.-Y., Size tailored bimetallic metal-organic framework (MOF) on graphene oxide with sandwich-like structure as functional nano-hybrids for improving fire safety of epoxy, Compos. Part B: Eng., 188, 107881, 2020.
9. Li, M., Pan, B., Liu, H., Zhu, L., Fan, X., Yue, E., Li, M., and Qin, Y., Interfacial tailoring of basalt fiber/epoxy composites by metal–organic framework based oil containers for promoting its mechanical and tribological properties, Compos. Part B: Eng., 44(8), 4757-4770, 2023.
10. Yu, X., Sun, P., Jia, P., Wang, W., Dai, K., Wang, B., and Song, L., Unlocking epoxy thermal management capability via hierarchical Ce-MOF@MoS2 hybrid constructed by in-situ growth method, J. Colloid Interface Sci., 678(C), 959-967, 2025.
11. Li, Q., Song, X., Pan, Y., Sun, J., Bifulco, A., and Yang, R., Dual function of carboxymethyl cellulose scaffold: A one-stone-two-birds strategy to prepare double-layer hollow ZIF-67 derivatives for flame retardant epoxy composites, J. Colloid Interface Sci., 674, 445-458, 2024.
12. Mohammadkhah, S., Ramezanzadeh, M., Eivaz Mohammadloo, H., Ramezanzadeh, B., and Ghamsarizade, R., Construction of a nano-micro nacre-inspired 2D-MoS2-MOF-glutamate carrier toward designing a high-performance smart epoxy composite, J. Ind. Eng. Chem., 121, 358-377, 2023.
13. Leng, Y., Sun, Y., Sun, P., Xu, M., Zhang, H., Li, X., and Li, B., Construction of self-lapping three-dimensional thermal conduction network in epoxy resin thermosets by incorporating “dendritic” zinc oxide derived from metal-organic framework, Surfaces Interfaces, 46, 103988, 2024.
14. Mirkhani Deligani, A., Moini Jazani, O., Molla-Abbasi, P., Moghadam, M., and Asghari, S., Assessment of the thermal properties and operation temperature for metal–organic frameworks and amine-functionalized metal–organic frameworks/epoxy/novolac composites: A comparative study, Thermal Sci. Eng. Progress, 55, 2024.
15. Liu, B., Xiong, L., and Fan, X., Anti-corrosion design of layered zirconium-based metal–organic frameworks (Zr-MOF) enhanced epoxy nanocomposite coatings, Appl. Surf. Sci., 677, 161051, 2024.
16. Nie, S., Liu, Y., Ye, L., Zhao, Z., Yang, K., Yang, J., and Wang, J., MOF-derived strategy for in-situ assembly of nickel phyllosilicate nanoflowers: Enhancing smoke suppression, flame retardancy and mechanical properties of epoxy resins, Appl. Surf. Sci., 682, 161641, 2025.
17. Zhang, J., Li, Z., Qi, X., Zhang, W., Wang, D., Size tailored bimetallic metal-organic framework (MOF) on graphene oxide with sandwich-like structure as functional nano-hybrids for improving fire safety of epoxy, Compos. B Eng., 188, 107881, 2020.
18. Chen, C., Wang, B., Xiao, G., Cao, M., Zhong, F., Yang, Z., Zhou, J., Wang, M., Zou, R., Tri-source integrated adenosine triphosphate loaded BN in synergy with Cu-MOF to improve the fire safety of epoxy resin, Constr. Build. Mater., 394, 132258, 2023.
19. Zhang, J., Li, Z., Yin, G., Wang, D., Construction of a novel three-in-one biomass based intumescent fire retardant through phosphorus functionalized metal-organic framework and β-cyclodextrin hybrids in achieving fire safe epoxy, Compos. Commun., 23, 100594, 2021.
20. Yin, Z., Wang, B., Tang, Q., Lu, J., Liao, C., Jia, P., Cheng, L., Song, L., Inspired by placoid scale to fabricate MXene derivative biomimetic structure on the improvement of interfacial compatibility, mechanical property, and fire safety of epoxy nanocomposites, Chem. Eng. J., 431, 133489, 2022.
21. Liu, N., Wang, H., Xu, B., Qu, L., Fang, D., Cross-linkable phosphorus/nitrogen-containing aromatic ethylenediamine endowing epoxy resin with excellent flame retardancy and mechanical properties, Compos. Part A-Appl. Sci. Manuf., 162, 107145, 2022.
22. Li, J., Cao, Q., Zhao, Y., Gu, C., Liu, B., Fan, Q., Zhang, C., Huang, Y., Jiang, S., Jian, X., Weng, Z., Bio-based flame retardant for manufacturing fire safety, strong yet tough versatile epoxy resin, Compos. Part B-Eng., 276, 111362, 2024.
23. Zhang, A., Zhang, J., Liu, L., Dai, J., Lu, X., Huo, S., Hong, M., Liu, X., Lynch, M., Zeng, X., Burey, P., Song, P., Engineering phosphorus-containing lignin for epoxy biocomposites with enhanced thermal stability, fire retardancy and mechanical properties, J. Mater. Sci. Technol., 167, 82–93, 2023.
24. Zhou, H., Zhou, Y., Cao, Y., Wang, Z., Wang, J., Zhang, Y., Pan, W., Hollow LDH cage covering with ultra-thin MXenes veil: Integrated micro-nano structure upon heat release suppression and toxic effluents elimination for polymer, Chem. Eng. J., 461, 142035, 2023.
25. Chen, Q., Liu, L., Zhang, A., Wang, W., Wang, Z., Zhang, J., Feng, J., Huo, S., Zeng, X., A phenylphosphinate@graphene oxide nanohybrid enabled flame-retardant, mechanically reinforced, and thermally conductive epoxy nanocomposites, Chem. Eng. J., 454, 140424, 2023.
26. Alowasheeir, A., Torad, N.L., Asahi, T., Alshehri, S.M., Ahamad, T., Bando, Y., Eguchi, M., Ysmauchi, Y., Terasawa, Y., Han, S.M., Synthesis of millimeter-scale ZIF-8 single crystals and their reversible crystal structure changes, Sci. Technol. Adv. Mater., 25, 2292485, 2024.
27. Jo, Y., Jo, Y.K., Lee, J., Jang, H.W., Hwang, I., Yoo, D.J., MOF-based chemiresistive gas sensors: toward new functionalities, Adv. Mater., 34, 2206842, 2022.
28. Peng, X., Chen, L., Li, Y., Ordered macroporous MOF-based materials for catalysis, Mol. Catal., 529, 112568, 2022.
29. Jia, T., Gu, Y., Li, F., Progress and potential of metal-organic frameworks (MOFs) for gas storage and separation: A review, J. Environ. Chem. Eng., 10, 108300, 2022.
30. Chu, H., Sun, D., Cui, P., Highly water-stable Zn5 cluster-based metal-organic framework for efficient gas storage and organic dye adsorption, Inorg. Chem., 61, 19642–19648, 2022.
31. Ali, A., Muslim, M., Neogi, I., Afzal, M., Alarifi, A., Ahmad, M., Construction of a 3D metal-organic framework and its composite for water remediation via selective adsorption and photocatalytic degradation of hazardous dye, ACS Omega, 7, 24438–24451, 2022.
32. Jrad, A., Damacet, P., Yaghi, Z., Ahmad, M., Hmadeh, M., Zr-based metal–organic framework nanocrystals for water remediation, ACS Appl. Nano Mater., 5, 10795–10808, 2022.
33. Zorainy, M.Y., Sheashea, M., Kaliaguine, S., Gobara, M., Boffito, D.C., Facile solvothermal synthesis of a MIL-47 (V) metal–organic framework for a high-performance Epoxy/MOF coating with improved anticorrosion properties, RSC Adv., 12, 9008–9022, 2022.
34. Liang, C., He, J., Zhang, Y., Zhang, W., Liu, C., Ma, X., Liu, Y., Gu, J., MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding, Compos. Sci. Technol., 224, 109445, 2022.
35. Hou, Y., Hu, W., Gui, Z., Hu, Y., A novel Co (II)–based metal-organic framework with phosphorus-containing structure: Build for enhancing fire safety of epoxy, Compos. Sci. Technol., 152, 231–242, 2017.
36. Su, X., Zhong, Z., Yan, X., et al. Facile synthesis of metallosalphen-based 2D conductive metal-organic frameworks for NO2 sensing: metal coordination induced planarization, Angew. Chem. Int. Edit., 62, e202302645, 2023.
37. Shan, Z.Q., Jia, X.H., Lin, Z., et al. In-situ growth strategy of ZIF-8 nanocrystals on carbon fibers achieved high-efficient interface enhancement, Surf. Interfaces, 33, 102230, 2022. doi:10.1016/j.surfin.2022.102230
38. Kizil, A., Dincer, U., Yilmaz, S., Gul, O., Karsli, N.G., Yilmaz, T. Investigation of the effect of zeolite, bentonite, and basalt fiber as natural reinforcing materials on the material properties of PPS and CF-reinforced PPS, Polym. Eng. Sci., 63, 1314–1322, 2023.
39.Yang, X.-M., Qiu, S., Yusuf, A., Sun, J., Zhai, Z., Zhao, J., Yin, G.-Z. Recent advances in flame retardant and mechanical properties of polylactic acid: A review, Int. J. Biol. Macromol., 243, 125050, 2023.
40.Hu, G., Zhang, X., Bu, M., Lei, C. Toughening and strengthening epoxy resins with a new bi-DOPO biphenyl reactive flame retardant, Eur. Polym. J., 178, 2022.