Polyoxymetal / polymer composites An overview of synthesis methods and their properties
Subject Areas :Marziyeh Kavian 1 , Milad Ghani 2 , Jahan Bakhsh Raoof 3
1 -
2 -
3 -
Keywords: Multiplayer, Host polymeric materials, POM, Molecular cloud modification, Surfactant-encapsulated POM,
Abstract :
This article gives an overview of the manufacturing method and properties of composites containing polyoxymetals / polymers. Polyoxometals (POMs) are discrete, molecular, metal oxide clusters of various sizes ranging from one to several nanometers that exhibit different topologies and diverse chemical and electronic properties. POMs show very strong acidity, which makes them effective acid catalysts for specific reactions such as esterification, hydrolysis, Friedel-Craft alkylation, and tetrahydrofuran ring-opening polymerization. The integration of mineral components with polymer matrices will combine the properties of the mineral phase with polymers and create new functions. Mineral micrometer building blocks have been used to enhance mechanical strength, improve thermal and chemical stability, and improve the performance of polymeric materials. With the rapid development of nanotechnology, polymers can also be used as a substrate for the stabilization of nanostructures, which will eventually have the properties of nanostructures and polymer substrates at the same time. Methods such as physical composition, electrostatic adsorption, covalent bonding, and supermolecular modification are the main methods for combining POM in organic or inorganic polymer matrices (eg silica). Polyoxymetal / polymer composites have various properties such as unique optical, electrical or catalytic properties of polyoxymetals and the optimal processing and stability of polymer matrices. POM/ polymer composites may have many applications in optics, electronics, biology, medicine and catalysis
1. Paul, D. R., & Robeson, L. M., Polymer nanotechnology: nanocomposites, Polymer, 49(15), 3187-3204, 2008.
2. Yang, L., Lei, J., Fan, J. M., Yuan, R. M., Zheng, M. S., Chen, J. J., & Dong, Q. F., The intrinsic charge carrier behaviors and applications of polyoxometalate clusters based materials. Advanced Materials, 33(50), 2005019, 2021.
3. Goriparthi, B. K., Naga Eswar Naveen, P., & Ravi Sankar, H., Performance evaluation of composite gears composed of POM, CNTs, and PTFE. Polymer Composites, 42(3), 1123-1134, 2021.
4. Pope, M. T., & Müller, A, Introduction to polyoxometalate chemistry: from topology via self-assembly to applications, In Polyoxometalate Chemistry from Topology via Self-Assembly to Applications (pp. 1-6), Springer, Dordrecht, 2001.
5. Kumari, R., Narvi, S. S., & Dutta, P. K, Design of polymer based inorganic-organic hybrid materials for drug delivery application, Journal of the indian chemical society, 97(12 A), 2609-2622, 2020.
6. Yang, L., Lei, J., Fan, J. M., Yuan, R. M., Zheng, M. S., Chen, J. J., & Dong, Q. F, The intrinsic charge carrier behaviors and applications of polyoxometalate clusters based materials, Advanced Materials, 33(50), 2005019, 2021.
7. Chen, J., Ai, L. M., Feng, W., Liu, Y., & Cai, W. M, Preparation and photochromism of nanocomposite thin film based on polyoxometalate and polyethyleneglycol, Materials Letters, 61(30), 5247-5249, 2007.
8. Shanmugam, S., Viswanathan, B., & Varadarajan, T. K, Photochemically reduced polyoxometalate assisted generation of silver and gold nanoparticles in composite films: a single step route, Nanoscale Research Letters, 2(3), 175-183, 2007.
9. Wang, Z., Ma, Y., Zhang, R., Peng, A., Liao, Q., Cao, Z., & Yao, J, Reversible Luminescent Switching in a [Eu(SiW10MoO39)2]13−‐Agarose Composite Film by Photosensitive Intramolecular Energy Transfer, Advanced Materials, 21(17), 1737-1741, 2009.
10. Yin, R., Guan, X. H., Gong, J., & Qu, L. Y, Evaluation of swelling capacity of poly (vinyl alcohol) fibrous mats dealt with polyoxometalate containing vanadium, Journal of applied polymer science, 106(3), 1677-1682, 2007.
11. Jing, B., Xu, D., Wang, X., & Zhu, Y., Multiresponsive, critical gel behaviors of polyzwitterion–polyoxometalate coacervate complexes. Macromolecules, 51(22), 9405-9411, 2018.
12. Li, H., Sun, H., Qi, W., Xu, M., & Wu, L., Onionlike hybrid assemblies based on surfactant‐encapsulated polyoxometalates, Angewandte Chemie International Edition, 46(8), 1300-1303, 2007.
13. Lan, Y., Wang, E., Song, Y., Song, Y., Kang, Z., Xu, L., & Li, Z., An effective layer-by-layer adsorption and polymerization method to the fabrication of polyoxometalate-polypyrrole nanoparticle ultrathin films, Polymer, 47(4), 1480-1485, 2006.
14. Li, H., Qi, W., Li, W., Sun, H., Bu, W. E. I. F. E. N. G., & Wu, L. I. X. I. N., A highly transparent and luminescent hybrid based on the copolymerization of surfactant‐encapsulated polyoxometalate and methyl methacrylate, Advanced Materials, 17(22), 2688-2692, 2005.
15. Wang, B., Vyas, R. N., & Shaik, S., Preparation parameter development for layer-by-layer assembly of keggin-type polyoxometalates, Langmuir, 23(22), 11120-11126, 2007.
16. Moore, A. R., Kwen, H., Beatty, A. M., & Maatta, E. A, Organoimido-polyoxometalates as polymer, Chemical Communications, (18), 1793-1794, 2000.
17. Li, D., Wei, J., Dong, S., Li, H., Xia, Y., Jiao, X., & Chen, D., Novel PVP/HTA hybrids for multifunctional rewritable paper. ACS applied materials & interfaces, 10(2), 1701-1706, 2018.
18. Li, H., Qi, W., Sun, H., Li, P., Yang, Y., & Wu, L, A novel polymerizable pigment based on surfactant-encapsulated polyoxometalates and their application in polymer coloration, Dyes and Pigments, 79(2), 105-110, 2008.
19. Kumari, R., Narvi, S. S., & Dutta, P. K. Design of polymer based inorganic-organic hybrid materials for drug delivery application. Journal of the Indian chemical society, 97(12 A), 2609-2622, 2020.
20. Maldotti, A., Molinari, A., Varani, G., Lenarda, M., Storaro, L., Bigi, F., ... & Sartori, G, Immobilization of (n-Bu4N)4W10O32 on mesoporous MCM-41 and amorphous silicas for photocatalytic oxidation of cycloalkanes with molecular oxygen, Journal of Catalysis, 209(1), 210-216, 2002.
21. Yang, L., Lei, J., Fan, J. M., Yuan, R. M., Zheng, M. S., Chen, J. J., & Dong, Q. F., The intrinsic charge carrier behaviors and applications of polyoxometalate clusters based materials. Advanced Materials, 33(50), 2005019, 2021.
22. Yan, J., Zheng, X., Yao, J., Xu, P., Miao, Z., Li, J., & Yan, Y., Metallopolymers from organically modified polyoxometalates (MOMPs): A review. Journal of Organometallic Chemistry, 884, 1-16, 2019.
23. Xu, B., Xu, L., Gao, G., Li, Z., Liu, Y., Guo, W., & Jia, L, Polyoxometalate-based gasochromic silica, New Journal of Chemistry, 32(6), 1008-1013, 2008.
24. Green, M., Harries, J., Wakefield, G., & Taylor, R, The synthesis of silica nanospheres doped with polyoxometalates, Journal of the American Chemical Society, 127(37), 12812-12813, 2005.
25. Hamidi, H., Shams, E., Yadollahi, B., & Esfahani, F. K, Fabrication of bulk-modified carbon paste electrode containing α-PW12O403− polyanion supported on modified silica gel: Preparation, electrochemistry and electrocatalysis, Talanta, 74(4), 909-914, 2008.
26. Zhang, X., Zhang, C., Guo, H., Huang, W., Polenova, T., Francesconi, L. C., & Akins, D. L, Optical spectra of a novel polyoxometalate occluded within modified MCM-41. The Journal of Physical Chemistry B, 109(41), 19156-19160, 2005.
27. Arun, S., Bhartiya, P., Naz, A., Rai, S., Narvi, S. S., & Dutta, P. K., Fabrication and characterization of polyoxometalate based nano-hybrids: evaluation of their role in biological activity. Journal of Polymer Materials, 35(4), 2018.
28. Zhang, R., & Yang, C, A novel polyoxometalate-functionalized mesoporous hybrid silica: synthesis and characterization, Journal of Materials Chemistry, 18(23), 2691-2703, 2008.
29. Chai, S., Cao, X., Xu, F., Zhai, L., Qian, H. J., Chen, Q., & Li, H. Multiscale self-assembly of mobile-ligand molecular nanoparticles for hierarchical nanocomposites. ACS nano, 13(6), 7135-7145, 2019.
30. Yin, Y. Z., Zhang, Z. G., He, W. W., Xu, J. M., Jiang, F. Y., Han, X., & Ma, S. Precise modification of poly (aryl ether ketone sulfone) proton exchange membranes with positively charged bismuth oxide clusters for high proton conduction performance. Sustanable Materials, 2022.