List of articles (by subject)


    • Open Access Article

      1 - -
      hoori mivechi
    • Open Access Article

      2 - -
      Amirhosein Yazdanbakhsh
    • Open Access Article

      3 - -
      Ali Abbasian
    • Open Access Article

      4 - Terminology to Support Manufacturing Process Characterization and Assessment for Sustainable Production
      HamidReza Sabbaghi Ali Abbasian
      Common terminology is essential for accurate communication among researchers, scientists, engineers, and other decision makers. To assist manufacturing process characterization, a common understanding of terminology is imperative for efficient and effective communicatio More
      Common terminology is essential for accurate communication among researchers, scientists, engineers, and other decision makers. To assist manufacturing process characterization, a common understanding of terminology is imperative for efficient and effective communication in industry; it can also facilitate automation and interoperability of software tools. Manufacturing process characterization enables the assessment and improvement of unit manufacturing processes, products, and systems from a sustain- ability perspective. To develop and implement sustainability-related standards and best practices in industry, naming conventions and definitions of common terms are needed. Presently, many terms used are ill-defined, vague, or overlap in meaning. Although there are ongoing standards efforts related to terminology identification and definition, an identified common set is yet to be developed. The objective of this work was to facilitate ongoing standards development efforts by harmonizing the varied array of terms used to describe production processes. As a result of a review of the literature, a concise set of 47 terms focusing on process characterization and able to describe sustainable production was generated; terms unique to individual production processes were omitted. The terms were orga- nized into six categories to define the overarching concepts: Scope, Boundary, Material, Measurement, Model, and Flow. Definitions of the terms were then derived from the literature in sustainable manufacturing and chemical and process industries, process characterization and planning, organization standards, and life cycle assessment and management. The reported terms and definitions are not unique to sustainable production, and could foster wide- spread use of the concepts to improve the economic, environmental, and social performance of industry. In the future, the terminology described could be standardized through international standards orga- nizations. Manuscript profile
    • Open Access Article

      5 - Terminology to Support Manufacturing Process Characterization and Assessment for Sustainable Production
      HamidReza Sabbaghi Ali Abbasian
      Common terminology is essential for accurate communication among researchers, scientists, engineers, and other decision makers. To assist manufacturing process characterization, a common understanding of terminology is imperative for efficient and effective communicatio More
      Common terminology is essential for accurate communication among researchers, scientists, engineers, and other decision makers. To assist manufacturing process characterization, a common understanding of terminology is imperative for efficient and effective communication in industry; it can also facilitate automation and interoperability of software tools. Manufacturing process characterization enables the assessment and improvement of unit manufacturing processes, products, and systems from a sustain- ability perspective. To develop and implement sustainability-related standards and best practices in industry, naming conventions and definitions of common terms are needed. Presently, many terms used are ill-defined, vague, or overlap in meaning. Although there are ongoing standards efforts related to terminology identification and definition, an identified common set is yet to be developed. The objective of this work was to facilitate ongoing standards development efforts by harmonizing the varied array of terms used to describe production processes. As a result of a review of the literature, a concise set of 47 terms focusing on process characterization and able to describe sustainable production was generated; terms unique to individual production processes were omitted. The terms were orga- nized into six categories to define the overarching concepts: Scope, Boundary, Material, Measurement, Model, and Flow. Definitions of the terms were then derived from the literature in sustainable manufacturing and chemical and process industries, process characterization and planning, organization standards, and life cycle assessment and management. The reported terms and definitions are not unique to sustainable production, and could foster wide- spread use of the concepts to improve the economic, environmental, and social performance of industry. In the future, the terminology described could be standardized through international standards orga- nizations. Manuscript profile
    • Open Access Article

      6 - a review of the investigation methods and performance of pure polymer gears
      Rasool Molhsenzadeh ehsan nozad bonab
      Plastic gears are widely used in various industries. The advantages of these gears include their lightness, automation, low noise, easy production and low cost. However, the high wear rate, limited working temperature and low mechanical strength in polymer gears, compar More
      Plastic gears are widely used in various industries. The advantages of these gears include their lightness, automation, low noise, easy production and low cost. However, the high wear rate, limited working temperature and low mechanical strength in polymer gears, compared to metal types, limit their application. Therefore, extensive research has been done on the performance of polymer gears in order to identify the failure mechanisms. Among the conducted researches, the researchers focus on different parts such as determining the critical torque or in other words, load bearing capacity, gear behavior at lower and higher torques than the critical torque, gear fatigue resistance, gear wear behavior on a micro and macro scale, as well as The thermal resistance of the gear is drawn. In addition, the difference in methods and the provision of new methods for checking the mentioned factors in order to check the performance of the gear can be seen in the research. In general, the type of polymer, torque and work cycle have been recognized as factors influencing the wear of polymer gears. In this research, the method and results of the research conducted on various types of gears made with commonly used polymer materials are presented. In such a way that by comparing the performance of all types of gears, it is possible to reach a general conclusion about their use. Manuscript profile
    • Open Access Article

      7 - A review of the use of rheology in the industry of producing propellants based on nitrocellulose polymer
      Mahmoud Heydari
      One of the main applications of nitrocellulose polymer is producing propellants. The propellant production process includes mixing nitrocellulose with solvents and other additives and converting it from a fibrous to a non-fibrous state during gelatinization and physical More
      One of the main applications of nitrocellulose polymer is producing propellants. The propellant production process includes mixing nitrocellulose with solvents and other additives and converting it from a fibrous to a non-fibrous state during gelatinization and physical gel formation. This gel is subsequently subjected to shaping processes using ram or screw extrusion. One of the main problems in producing propellant based on nitrocellulose is the lack of uniformity and product quality control. Despite the high capability of rheology knowledge as a powerful tool for measuring the quality control of raw materials and the production process of propellant based on nitrocellulose, this knowledge has received less attention from researchers and manufacturers in this field. This article reviewed the use of rheology in different parts of the production of nitrocellulose-based propellants, from the quality control of the incoming raw materials to the final mixing and extrusion. At first, the rheological behavior of nitrocellulose mixtures was discussed. Next, the effect of nitrocellulose polymer microstructure on the rheological behavior of its solution was discussed. Phenomena affecting the measurement of the rheological behavior of the mixture, such as wall slippage, were among the other cases investigated. Finally, a review of the quality control methods of nitrocellulose-based propellant products using appropriate material functions and production process modification was discussed. Manuscript profile
    • Open Access Article

      8 - A review of polymer bonded explosive rheology
      Mahmoud Heydari
      Polymer-bonded explosives are widely used in defense and commercial industries. In this type of explosive, very high amounts of explosive crystals (about 90% by weight) are surrounded by a polymeric binder (about 10%), which leads to a decrease in sensitivity and a sign More
      Polymer-bonded explosives are widely used in defense and commercial industries. In this type of explosive, very high amounts of explosive crystals (about 90% by weight) are surrounded by a polymeric binder (about 10%), which leads to a decrease in sensitivity and a significant increase in safety during application and storage. These mixtures are molded in different ways, such as pressing, casting, extrusion, and injection. Studying the rheology of these mixtures with a high percentage of solid loading leads to finding the appropriate quality control method at different production stages. The first step was to review studies on alternatives to simulating explosive rheological behavior, such as dechlorane, calcium carbonate, sugar, etc. The general behavior of simulated mixtures, such as yield stress, shear rate dependence, time dependence, etc., is compared with original explosive. The results showed that despite the similarity in some rheological behaviors, it is impossible to predict and study all the rheological behaviors of polymer-bonded explosives using simulating materials. This paper discusses factors affecting the rheology of polymer-bonded explosives, such as particle size distribution, modification of explosive crystal surfaces, and plasticizer. A review of scientific sources showed that using a wide distribution of explosive crystal particles compared to a narrow distribution led to a significant reduction in viscosity and dependence on shear rate and time. The absence of strong interactions between crystal particles and polymer binder leads to no observation of quasi-solid behavior even in 85% by weight of explosive crystals such as octogen in hydroxyl-terminated polybutadiene Manuscript profile