Self-Healing Polymer Electrolytes used in Lithium-Ion Batteries
Subject Areas :Maral Ghahramani 1 , Mobina Razani 2
1 -
2 - Department of Polymer Reaction Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
Keywords: lithium-ion battery, polymer electrolytes, self-healing, reversible covalent bond, supramolecular bonds,
Abstract :
Lithium-ion batteries, as one of the most advanced and suitable rechargeable batteries, have received considerable attention in recent years. Polymer electrolytes are considered as one of the main components of the battery and good substitute for liquid electrolytes in the next generations of batteries. The polymer electrolytes used in the battery may be damaged or lose performance due to the alternating movement of ions or physical damage. To avoid the damages caused by this phenomenon, the use of self-healing polymer electrolytes is suggested as a appropriate solution. The ability of self-healing in the polymer electrolytes makes them start to repair themselves as soon as a craze or crack occurs on their surface, without the need for any stimulus, and even after repair, they are able to recover all their properties. This ability comes from the microstructure and type of chemical bonds of self-healing polymers. In general, the self-healing polymer electrolytes used in batteries are divided into two main categories: polymer electrolytes based on reversible covalent bonds, and polymer electrolytes based on non-covalent supramolecular bond type. Considering the importance of this issue, in this research, a review of self-healing polymer electrolytes in the next generation of lithium batteries will be done.
1. Ezeigwe E. R., Dong L., Manjunatha R., Tan M., Yan W., Zhang J., A Review of Self-healing Electrode and Electrolyte Materials and Their Mitigating Degradation of Lithium Batteries, Nano Energy, 84, 105907, 2021.
2. Zhou B., Jo YH., Wang R., He D., Zhou X., Xie X., Xue Zh., Self-healing Composite Polymer Electrolyte Formed via Supramolecular Networks for High-performance Lithium-ion Batteries, Journal of Materials Chemistry A, 7, 10354-10362, 2019.
3. Budde-Meiwes H., Drillkens J., Lunz B., Muennix J., Rothgang S., Kowal J., Uwe Sauer D., A Review of Current Automotive Battery Technology and Future Prospects, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227, 761-776, 2013.
4. Deng D., Li-ion Batteries: Basics, Progress, and challenges, Energy Science & Engineering, 3, 385-418, 2015.
5. Lu J., Chen Z., Pan F., Cui Y., Amine K., High-performance Anode Materials for Rechargeable Lithium-ion Batteries, Electrochemical Energy Reviews, 1, 35-53, 2018.
6. Voelker P., Scientific T., Trace Degradation Analysis of Lithium-ion Battery Components, R&D Magazinde, 2014.
7. Jaumaux P., Liu Q., Zhou D., Xu X., Wang T., Wang Y., :ang F., Li B., Wang G., Deep-eutectic Solvent Based Self-healing Polymer Electrolyte for Safe and Long-life Lithium-metal Batteries, Angewandte Chemie International Edition, 59, 9134-9142, 2020.
8. Aziz SB., Woo TJ., Kadir M., Ahmed H.M., A Conceptual Review on Polymer Electrolytes and Ion Transport Models, Journal of Science: Advanced Materials and Devices, 3, 1-17, 2018.
9. Gan H., Zhang Y., Li S., Yu L., Wang J., Xue Z., Self-healing Single-ion Conducting Polymer Electrolyte Formed via Supramolecular Networks for Lithium Metal Batteries, ACS Applied Energy Materials, 4, 482-491, 2020.
10. Deng K., Zhou S., Xu Z., Xiao M., Meng Y., A High Ion-conducting, Self-healing and Nonflammable Polymer Electrolyte with Dynamic Imine Bonds for Dendrite-free Llithium Metal Batteries, Chemical Engineering Journal, 428, 131224, 2022.
11. Fuchs Y., Brown S., Gorenc T., Rodriguez J., Fuchs E., Steller H., Sept4/ARTS Regulates Stem Cell Apoptosis and Skin Regeneration, Science, 341, 6143, 286-289, 2013.
12. Driskell RR., Lichtenberger BM., Hoste E., Kretzschmar K., Simons BD., Charalambous M., Ferron SR., Herault Y., Pavlovic G., Fergosun-Smih AC., Watt FM., Distinct Fibroblast Lineages Determine Dermal Architecture in Skin Development and Repair, Nature, 504, 7479, 277-281, 2013.
13. Chou WC., Takeo M., Rabbani P., Hu H., Lee W., Chung YR., Carucci J., Overbeek P., Ito M., Direct Migration of Follicular Melanocyte Stem Cells to the Epidermis After Wounding or UVB Irradiation is Dependent on Mc1r Signaling,
Nature Medicine, 19, 924-929, 2013.
14. Ying H., Zhang Y., Cheng J., Dynamic Urea Bond for the Design of Reversible and Self-healing Polymers, Nature Communications, 5, 1-9, 2014.
15. Li C.H., Wang C., Keplinger C., Zuo J-L., Jin L., Sun Y., Zheng P., Cao Y., Lissel F., Linder C., You W-Z., Bao Z., A Highly Stretchable Autonomous Self-healing Elastomer, Nature Chemistry, 8, 618-624, 2016.
16. Kakuta T., Takashima Y., Nakahata M., Otsubo M., Yamaguchi H. Harada A., Hydrogels: Preorganized Hydrogel: Self-Healing Properties of Supramolecular Hydrogels Formed by Polymerization of Host–Guest Monomers that Contain Cyclodextrins and Hydrophobic Guest Groups, Advanced Materials, 25, 2758-2758, 2013.
17. Wang C., Liu N., Allen R., Tok JBH., Wu Y., Zhang F.Chen Y., Bao Z., A Rapid and Efficient Self-healing Thermo-reversible Elastomer Crosslinked with Graphene Oxide, Advanced Materials, 25, 5785-5790, 2013.
18. Yang Y., Urban M. W., Self Repairable Polyurethane Networks by Atmospheric Carbon Dioxide and Water, Angewandte Chemie, 126, 12338-12343, 2014.
19. Chen X., Dam MA., Ono K., Mal A., Shen H., Nutt SR., Sheran K., Wudl F., A Thermally Re-mendable Cross-linked Polymeric Material, Science, 295, 1698-1702, 2002.
20. Ghosh B., Urban MW., Self-repairing Oxetane-substituted Chitosan Polyurethane Networks, Science, 323, 1458-1460, 2009.
21. Imato K., Nishihara M., Kanehara T., Amamoto Y., Takahara A., Otsuka H., Self-healing of Chemical Gels Cross-linked by Diarylbibenzofuranone-based Trigger-free Dynamic Covalent Bonds at Room Temperature, Angewandte Chemie, 124, 1164-1168, 2012.
22. Chen Y., Kushner AM., Williams GA., Guan Z., Multiphase Design of Autonomic Self-healing Thermoplastic Elastomers, Nature Chemistry, 4, 467-472, 2012.
23. Cordier P., Tournilhac F., Soulié-Ziakovic C., Leibler L., Self-healing and Thermoreversible Rubber from Supramolecular Assembly, Nature, 451, 977-980, 2008.
24. Burnworth M., Tang L., Kumpfer JR., Duncan AJ., Beyer FL., Fiore GL., Rowan SJ., Weder C., Optically Healable Supramolecular Polymers, Nature, 472, 334-337, 2011.
25. Nakahata M., Takashima Y., Yamaguchi H., Harada A., Redox-responsive Self-healing Materials Formed from Host–guest Polymers, Nature Communications, 2, 1-6, 2011.
26. Wang S., Urban MW., Self-healing Polymers, Nature Reviews Materials, 5, 562-583, 2020.
27. Binder W. H., Self-healing Polymers: from Principles to Applications, John Wiley & Sons, 211, USA, 2013.
28. Cha H., Kim J., Lee Y., Cho J., Park M., Issues and Challenges Facing Flexible Lithium-ion Batteries for Practical Application, Small, 14, 1702989, 2018.
29. Tao T., Lu S., Chen Y., A Review of Advanced Flexible Lithium-ion Batteries, Advanced Materials Technologies, 3, 1700375, 2018.
30. Tian X., Yang P., Yi Y., Liu P., Wang T., Shu C., Qu L., Tang W., Zhang Y., Li M., Yang B., Self-healing and High Stretchable Polymer Electrolytes Based on Ionic Bonds with High Conductivity for Lithium Batteries, Journal of Power Sources, 450, 227629, 2020.
31. Zhou B., Yang M., Zuo C., Chen G., He D., Zhou X., Liu C., Xie X., Xue Z., Flexible, Self-healing, and Fire-resistant Polymer Electrolytes Fabricated via Photopolymerization for All-solid-state Lithium Metal Batteries, ACS Macro Letters, 9, 525-532, 2020.
32. Zhou B., He D., Hu J., Ye Y., Peng H., Zhou X., Xie X., Xue Z., A flexible, Self-healing and Highly Stretchable Polymer Electrolyte via Quadruple Hydrogen Bonding for Lithium-ion Batteries, Journal of Materials Chemistry A, 6, 11725-11733, 2018.
33. Ahmed F., Choi I., Rahman MM., Jang H., Ryu T., Yoon S., Jin L., Jin Y., Kim W., Remarkable Conductivity of a Self-healing Single-ion Conducting Polymer Electrolyte, Poly (ethylene-Co-Acrylic Lithium (Fluoro Sulfonyl) Imide), for All-solid-state Li-ion Batteries, ACS Applied Materials & Interfaces, 11, 34930-34938, 2019.
34. D’Angelo AJ., Panzer MJ., Design of Stretchable and Self-healing Gel Electrolytes via Fully Zwitterionic Polymer Networks in Solvate Ionic Liquids for Li-based Batteries, Chemistry of Materials, 31, 2913-2922, 2019.
35. Wang C., Li R., Chen P., Fu Y., Ma X., Shen T., Zhou B., Chen K., Fu J., Bao X., Yan W., Yong Y., Highly Stretchable, Non-flammable and Notch-insensitive Intrinsic Self-healing Solid-state Polymer Electrolyte for Stable and Safe Flexible Lithium Batteries, Journal of Materials Chemistry A, 9, 4758-4769, 2021.
36. Wang P., Yang L., Dai B., Yang Z., Guo S., Gao G., Xu L., Sun M., Yao K., Zhu J., A Self-Healing Transparent Polydimethylsiloxane Elastomer Based on Imine Bonds, European Polymer Journal, 123, 109382, 2020.
37. Cao X., Zhang P., Guo N., Tong Y., Xu Q., Zhou D., Feng Z., Self-healing Solid Polymer Electrolyte Based on Imine Bonds for High Safety and Stable Lithium Metal Batteries, RSC Advances, 11, 2985-2994, 2021.
38. Liang F., Wang T., Fan H., Xiang J., Chen Y., A Leather Coating with Self-healing Characteristics, Leather Science and Engineering Journal, 2, 1, 2020.
39. Jo Y. H., Li Sh., Zho C., Zhang Y., Gan H., Li S., Yu L., He D., Xie X., Xue Z., Self-healing Solid Polymer Electrolyte Facilitated by a Dynamic Cross-linked Polymer Matrix for Lithium-ion Batteries, Macromolecules,53, 1024-1032, 2020.
40. Ehrhardt D., Van Durme K., Jansen J. F., Van Mele B., Van den Brande N., Self-healing UV-Curable Polymer Network with Reversible Diels-Alder Bonds for Applications in Ambient Conditions, Polymer, 203, 122762, 2020.
41. Chen L., Cai X., Sun Z., Zhang B., Bao Y., Liu Z., Han D., Niu L., Self-Healing of a Covalently Cross-Linked Polymer Electrolyte Membrane by Diels-Alder Cycloaddition and Electrolyte Embedding for Lithium Ion Batteries, Polymers, 13, 4155, 2021.