کاربرد نانوذرات ZnO تعبیهشده در هیدروژلهای کیتوسان برای بهبود تصفیه فتوکاتالیستی پساب
محورهای موضوعی : پلیمرها در انرژی و کاربردهای بهداشتی و محیطیالهام خلج کریمی 1 , عهدیه امجدی 2 *
1 - مراغه، دانشگاه مراغه، دانشکده فنی و مهندسی، گروه مهندسی شیمی، صندوق پستی ۸۳۱۱۱-۵۵۱۸۱
2 - مراغه، دانشگاه مراغه، دانشکده فنی و مهندسی، گروه مهندسی شیمی، صندوق پستی ۸۳۱۱۱-۵۵۱۸۱
کلید واژه: تصفیه فتوکاتالیستی, آلودگی های آب, نانوذرات اکسید روی, دوپینگ, هیدروژل کیتوسان, بهبود عملکرد,
چکیده مقاله :
آلودگی آب ناشی از مواد شیمیایی مقاوم مانند رنگها، آنتیبیوتیکها و آفتکشها یکی از چالشهای جدی زیستمحیطی در سراسر جهان است. روشهای تصفیه سنتی غالباً به دلیل ناکارآمدی در حذف کامل این آلایندهها، با محدودیتهای بسیاری مواجه هستند. در این میان، فوتوکاتالیستها بهعنوان یکی از راهکارهای نوآورانه و کارآمد برای تخریب آلایندههای آلی و مقاوم، توجه زیادی را به خود جلب کردهاند. از میان فوتوکاتالیستهای مختلف، اکسید روی (ZnO) و دیاکسید تیتانیوم (TiO₂) به دلیل خواص برجسته نوری، شیمیایی و کاتالیستی خود، بیشترین کاربرد را دارند. بااینحال، ZnO با محدودیتهایی مانند بازده پایین جذب نور مرئی، بازترکیب سریع جفت الکترون-حفره و پایداری ضعیف روبهرو است. این پژوهش به بررسی روشهای مختلف سنتز و دوپینگ ZnO پرداخته تا عملکرد فوتوکاتالیستی آن بهبود یافته و حساسیت آن به نور مرئی افزایش یابد. در ادامه، استفاده از هیدروژلهای مبتنی بر کیتوسان بهعنوان بستری نوآورانه و زیستسازگار برای رفع این محدودیتها پیشنهاد شده است. این هیدروژلها، با ویژگیهایی نظیر ظرفیت بالای جذب آلایندهها، زیستسازگاری و بهبود پایداری، تأثیر قابلتوجهی بر کارایی ZnO دارند. نتایج نشان میدهد که ترکیب ZnO با هیدروژلهای کیتوسان میتواند به کاهش آلودگیهای زیستمحیطی و تصفیه مؤثر آب منجر شود و راهکاری پایدار و عملی برای تصفیه آب صنعتی و شهری ارائه دهد.
Water pollution caused by resistant chemicals such as dyes, antibiotics, and pesticides is a significant global environmental challenge. Traditional treatment methods often face substantial limitations in fully eliminating these pollutants. Among the innovative solutions, photocatalysts have gained considerable attention for their efficiency in degrading organic and resistant pollutants. Zinc oxide (ZnO) and titanium dioxide (TiO₂) stand out among photocatalysts due to their exceptional optical, chemical, and catalytic properties. However, ZnO suffers from challenges such as low visible light absorption, rapid electron-hole recombination, and limited stability, which restrict its efficiency. This study explores various synthesis techniques and doping strategies to improve ZnO’s photocatalytic performance and enhance its visible light sensitivity. Furthermore, the integration of ZnO with chitosan-based hydrogels is proposed as a novel and eco-friendly approach to overcoming these limitations. These hydrogels, featuring high pollutant adsorption capacity, biocompatibility, and enhanced stability, play a crucial role in boosting ZnO’s performance. The results demonstrate that combining ZnO with chitosan hydrogels significantly enhances the degradation efficiency of organic pollutants and offers a sustainable strategy for reducing water pollution. This innovative approach provides a practical and environmentally friendly solution for addressing water contamination and holds potential for application in industrial and municipal wastewater treatment systems.
[1] Vo, T.S., K.M. Lwin, and K. Kim, Recent developments of nano-enhanced composite membranes designed for water/wastewater purification—a review. Advanced Composites and Hybrid Materials, 2024. 7(4): p. 127.
[2] Abd El-Ghany, N.A., et al., Recent advances in various starch formulation for wastewater purification via adsorption technique: a review. Journal of Polymers and the Environment, 2023. 31(7): p. 2792-2825.
[3] Zhang, J., et al., Photocatalysis coupling with membrane technology for sustainable and continuous purification of wastewater. Separation and Purification Technology, 2024. 329: p. 125225.
[4] Liu, H., C. Wang, and G. Wang, Photocatalytic advanced oxidation processes for water treatment: recent advances and perspective. Chemistry–An Asian Journal, 2020. 15(20): p. 3239-3253.
[5] Al-Nuaim, M.A., A.A. Alwasiti, and Z.Y. Shnain, The photocatalytic process in the treatment of polluted water. Chemical papers, 2023. 77(2): p. 677-701.
[6] Long, Z., et al., Historical development and prospects of photocatalysts for pollutant removal in water. Journal of hazardous materials, 2020. 395: p. 122599.
[7] Lv, S.-W., et al., Developing fine-tuned metal–organic frameworks for photocatalytic treatment of wastewater: A review. Chemical Engineering Journal, 2022. 433: p. 133605.
[8] Dostanić, J., et al., Recent Advances in the Strategies for Developing and Modifying Photocatalytic Materials for Wastewater Treatment. Processes, 2024. 12(9): p. 1914.
[9] Hakki, H.K. and M. Sillanpää, Comprehensive analysis of photocatalytic and photoreactor challenges in photocatalytic wastewater treatment: A case study with ZnO photocatalyst. Materials Science in Semiconductor Processing, 2024. 181: p. 108592.
[10] Zheng, Z., et al., Recent advances of photocatalytic coupling technologies for wastewater treatment. Chinese Journal of Catalysis, 2023. 54: p. 88-136.
[11] Jiang, R., et al., Sustainable chitosan-based materials as heterogeneous catalyst for application in wastewater treatment and water purification: An up-to-date review. International Journal of Biological Macromolecules, 2024: p. 133043.
[12] Chen, J., et al., ZnO-Ti3C2TX composites supported on polyacrylic acid/chitosan hydrogels as high-efficiency and recyclable photocatalysts for norfloxacin degradation. International Journal of Biological Macromolecules, 2024. 258: p. 128912.
[13] Lee, K.M., et al., Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water research, 2016. 88: p. 428-448.
[14] Sathiyaseelan, A., et al., Research progress on chitosan-zinc oxide nanocomposites fabrication, characterization, biomedical and environmental applications. Coordination Chemistry Reviews, 2023. 496: p. 215398.
[15] Borah, P., M. Kumar, and P. Devi, Types of inorganic pollutants: metals/metalloids, acids, and organic forms, in Inorganic pollutants in water. 2020, Elsevier. p. 17-31.
[16] Beniah Obinna, I. and E. Christian Ebere, A review: Water pollution by heavy metal and organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants. Analytical Methods in Environmental Chemistry Journal, 2019. 2(3): p. 5-38.
[17] Srivastav, A.L. and M. Ranjan, Inorganic water pollutants, in Inorganic pollutants in water. 2020, Elsevier. p. 1-15.
[18] Isaeva, V.I., et al., Modern carbon–based materials for adsorptive removal of organic and inorganic pollutants from water and wastewater. Molecules, 2021. 26(21): p. 6628.
[19] Ahamad, A., et al., Types of water pollutants: conventional and emerging. Sensors in water pollutants monitoring: Role of material, 2020: p. 21-41.
[20] Sinar Mashuri, S.I., et al., Photocatalysis for organic wastewater treatment: From the basis to current challenges for society. Catalysts, 2020. 10(11): p. 1260.
[21] Kumari, H., et al., A review on photocatalysis used for wastewater treatment: dye degradation. Water, Air, & Soil Pollution, 2023. 234(6): p. 349.
[22] Mohamadpour, F. and A.M. Amani, Photocatalytic systems: reactions, mechanism, and applications. RSC advances, 2024. 14(29): p. 20609-20645.
[23] Gowland, D.C., N. Robertson, and E. Chatzisymeon, Photocatalytic oxidation of natural organic matter in water. Water, 2021. 13(3): p. 288.
[24] Cui, Y., et al., Research progress in semiconductor materials with application in the photocatalytic reduction of CO2. Catalysts, 2022. 12(4): p. 372.
[25] Sun, N., et al., Strategies for enhancing the photocatalytic activity of semiconductors. International Journal of Hydrogen Energy, 2024. 58: p. 1249-1265.
[26] Bhapkar, A.R. and S. Bhame, A review on ZnO and its modifications for photocatalytic degradation of prominent textile effluents: Synthesis, mechanisms, and future directions. Journal of Environmental Chemical Engineering, 2024: p. 112553.
[27] Abou Zeid, S. and Y. Leprince-Wang, Advancements in ZnO-based photocatalysts for water treatment: a comprehensive review. Crystals, 2024. 14(7): p. 611.
[28] Mahlaule-Glory, L.M. and N.C. Hintsho-Mbita, Green derived zinc oxide (ZnO) for the degradation of dyes from wastewater and their antimicrobial activity: a review. Catalysts, 2022. 12(8): p. 833.
[29] Nagaraju, P., et al., Preparation of modified ZnO nanoparticles for photocatalytic degradation of chlorobenzene. Applied Water Science, 2020. 10(6): p. 1-15.
[30] Jadoun, S., et al., Conducting polymers/zinc oxide-based photocatalysts for environmental remediation: a review. Environmental chemistry letters, 2022. 20(3): p. 2063-2083.
[31] Shaba, E.Y., et al., A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Applied Water Science, 2021. 11(2): p. 48.
[32] Ong, C.B., L.Y. Ng, and A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 2018. 81: p. 536-551.
[33] Qi, K. and J. Yu, Modification of ZnO-based photocatalysts for enhanced photocatalytic activity, in Interface Science and Technology. 2020, Elsevier. p. 265-284.
[34] Aftab, S., et al., Highly efficient visible light active doped ZnO photocatalysts for the treatment of wastewater contaminated with dyes and pathogens of emerging concern. Nanomaterials, 2022. 12(3): p. 486.
[35] Baibara, O., et al., A review of the some aspects for the development of ZnO based photocatalysts for a variety of applications. Physics and Chemistry of Solid State, 2021. 22(3): p. 585-594.
[36] Hussain, R.T., M.S. Hossain, and J.H. Shariffuddin, Green synthesis and photocatalytic insights: A review of zinc oxide nanoparticles in wastewater treatment. Materials Today Sustainability, 2024: p. 100764.
[37] Aouadi, A., et al., Introducing the antibacterial and photocatalytic degradation potentials of biosynthesized chitosan, chitosan–ZnO, and chitosan–ZnO/PVP nanoparticles. Scientific Reports, 2024. 14(1): p. 14753.
[38] Sethi, S. and S. Thakur, Synthesis and characterization of nanocomposite chitosan-gelatin hydrogel loaded with ZnO and its application in photocatalytic dye degradation. Materials Today: Proceedings, 2023. 78: p. 815-824.
[39] Jiang, R., et al., Colloidal CdS sensitized nano-ZnO/chitosan hydrogel with fast and efficient photocatalytic removal of congo red under solar light irradiation. International Journal of Biological Macromolecules, 2021. 174: p. 52-60.
[40] Zhang, L., et al., 3D chitosan/GO/ZnO hydrogel with enhanced photocorrosion-resistance and adsorption for efficient removal of typical water-soluble pollutants. Catalysis Communications, 2023. 176: p. 106627.
[41] Taghizadeh, M.T., et al., ZnO, AgCl and AgCl/ZnO nanocomposites incorporated chitosan in the form of hydrogel beads for photocatalytic degradation of MB, E. coli and S. aureus. International journal of biological macromolecules, 2020. 147: p. 1018-1028.
[42] Sharma, J., S. Sharma, and V. Soni, Classification and impact of synthetic textile dyes on Aquatic Flora: A review. Regional Studies in Marine Science, 2021. 45: p. 101802.
[43] Ardila-Leal, L.D., et al., A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules, 2021. 26(13): p. 3813.
[44] Khan, S., et al., Photocatalytic Dye Degradation from Textile Wastewater: A Review. ACS omega, 2024.
[45] Yaqoob, A.A., et al., Advances and challenges in developing efficient graphene oxide-based ZnO photocatalysts for dye photo-oxidation. Nanomaterials, 2020. 10(5): p. 932.
[46] Waghchaure, R.H., V.A. Adole, and B.S. Jagdale, Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and Eriochrome black T dyes by modified ZnO nanocatalysts: A concise review. Inorganic Chemistry Communications, 2022. 143: p. 109764.
[47] Dodoo-Arhin, D., et al., Photocatalytic degradation of Rhodamine dyes using zinc oxide nanoparticles. Materials Today: Proceedings, 2021. 38: p. 809-815.
[48] Li, H., et al., Facile production of three-dimensional chitosan fiber embedded with zinc oxide as recoverable photocatalyst for organic dye degradation. International Journal of Biological Macromolecules, 2021. 181: p. 150-159.
[49] Liakos, E.V., et al., Chitosan adsorbent derivatives for pharmaceuticals removal from effluents: A review. Macromol, 2021. 1(2): p. 130-154.
[50] Gkika, D.A., et al., Modified chitosan adsorbents in pharmaceutical simulated wastewaters: A review of the last updates. Carbohydrate Polymer Technologies and Applications, 2023. 5: p. 100313.
[51] Khan, S.H. and B. Pathak, Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review. Environmental nanotechnology, monitoring & management, 2020. 13: p. 100290.
[52] Mutalib, A.A. and N. Jaafar, ZnO photocatalysts applications in abating the organic pollutant contamination: A mini review. Total Environment Research Themes, 2022. 3: p. 100013.
[53] Daqa, W.M., et al., Potential Applications of Chitosan-Coated Zinc Oxide Nanoparticles for Degrading Pesticide Residues in Environmental Soils. Crystals, 2023. 13(3): p. 391.