بررسی دو فرایند مهم فناوری هیدروژن زدایی پروپان و ضرورت استفاده از این فناوری در صنعت پتروشیمی ایران
محورهای موضوعی : تحلیل بازار پلیمرها و آینده نگریمحمد مهدی برجسته 1 , حسین زمانی 2
1 - پتروشيمي سلمان
2 - كارشناس آزمايشگاه
کلید واژه: پتروشیمی, هیدروژن زدایی از پروپان, پروپیلن, پلیپروپیلن, کاتالیزور,
چکیده مقاله :
صنعت پتروشیمی شاخه ای از صنایع شیمیایی است که از مواد اولیه به شکل نفت و گاز برای تولید محصولات صنعتی استفاده می کند. در این مسیر انواع فرایندهای شیمیایی یا فیزیکی برای تولید محصول بهینه بهکار گرفته می شود. از محصولات کلیدی و راهبردي در صنعت پتروشیمی می توان به پروپیلن و پلی پروپیلن اشاره کرد. هیدروژن زدایی پروپان (PDH-Propane Dehydrogenation) فناوری کاتالیزوری پربازدهی است که برای تبدیل پروپان به پروپیلن و نهایتاً پلی پروپیلن استفاده شده و امروزه مورد توجه گسترده ای قرار گرفته است. پروپیلن یکی از محصولات میانی است که در بسیاری از کاربردهای پتروشیمی مانند ساخت رزین های پلی پروپیلن، اسیدهای اکریلیک، پروپیلنگلیکول، آکریلونیتریل، کومن/فنل و سایر محصولات صنعتی، استفاده می شود. معمولاً، پروپیلن از شکستن نفتای مشتقشده از نفت به دست می آید و محصول جانبی تولید اتیلن است، اما در حال حاضر بهمنظور تولید گسترده تر پروپیلن، از فرایند هیدروژن زدایی پروپان استفاده می شود. با افزایش تقاضای جهانی برای پروپیلن در بخش خودرو، تولید درب بطری، پارچه، مواد بستهبندی و تولید مواد شیمیایی، صنعت پتروشیمی لاجرم با سرعت فزاینده ای به سمت تولید هدفمند پروپیلن، در حال حرکت است. این هدف عمدتاً از طریق هیدروژن زدایی پروپان، که در آن پروپان بهطور انتخابی هیدروژنه می شود (حذف هیدروژن از جریان پروپان)، قابل دستیابی خواهد بود. بررسی های حاصل از این پژوهش علاوه بر مشخص کردن روش مناسب تر تولید پروپیلن از پروپان (Oleflex یا Catofin)، نشان دهنده این موضوع است که اجرای طرح های PDH در کشور، علاوه بر تأمین نیاز صنایع داخلی، تکمیل زنجیره های ارزش را هم برای صنعت پتروشیمی کشور به ارمغان خواهد آورد.
Petrochemical industry is a branch of chemical industry that uses raw materials in the form of oil and gas to produce industrial products. Various chemical or physical processes are used to produce optimal products. Among the key and strategic products in the petrochemical industry, we can mention propylene and polypropylene. Propane dehydrogenation (PDH-Propane dehydrogenation) is a highly efficient catalytic technology that is used to convert propane into propylene and finally polypropylene, and it has received wide attention today. Propylene is one of the intermediate products used in many petrochemical applications, such as the production of polypropylene resins, acrylic acids, propylene glycol, acrylonitrile, cumene/phenol and other industrial products. Usually, propylene is obtained by cracking naphtha derived from oil and is a byproduct of ethylene production, but currently, in order to produce propylene more widely, propane dehydrogenation process is used. With the increase in global demand for propylene in the automotive sector, the production of bottle caps, fabrics, packaging materials and the production of chemicals, the petrochemical industry is inevitably moving towards the targeted production of propylene. This goal will be achieved mainly through propane dehydrogenation, where propane is selectively hydrogenated (removal of hydrogen from the propane stream). The results of this research, in addition to identifying the most suitable method of producing propylene from propane (Oleflex or Catofin), indicate that the implementation of PDH projects in the country, in addition to meeting the needs of domestic industries, completing the chains It will also bring value to the country's petrochemical industry.
1. Sahebdelfar S., Tahriri Zangeneh F., Dehydrogenation of Propane to Propylene Over Pt-Sn/-Al2O3 Catalysts: The Influence of Operating Conditions on Product Selectivity, Iranian Journal of Chemical Engineering, 7, 51-57, 2010.
2. Chen S., Chang X., Sun G., Zhang T., Xu Y., Wang Y., Peiab C., Gong J., Propane Dehydrogenation: Catalyst Development New Chemistry, and Emerging Technologies, Chemical Society Reviews Journal, 50, 3315-3354, 2021.
3. Fattahi M., Khorasheha F., Sahebdelfar S., Tahriri Zangeneh F.,Ganji K., Saeedizad M., The effect of Oxygenate Additives on the Performance of Pt–Sn/γ -Al2O3 Catalyst in the Propane Dehydrogenation Process, Scientia Iranica, 18, 1377-1383, 2011.
4. Martino M., Meloni E., Festa G., Palma V., Propylene Synthesis: Recent Advances in the Use of Pt-based Catalysts for Propane Dehydrogenation Reaction, Catalysts, 11, 1070, 2021.
5. Moghimpour Bijani P., Sahebdelfar S., Modeling of a Radial-flow Moving-bed Reactor for Dehydrogenation of Isobutane, Kinetics and Catalysis, 49, 599–605, 2008.
6. Yee C.S., Prasetiawan H., Hisyam A., Azahari A., Maharon I.H., Sensitivity Study of the Propane Dehydrogenation Process in an Industrial Radial Moving Bed Reactor, Journal of Engineering Science and Technology, 21, 62–74, 2015.
7. Maddah H.A., A Comparative Study between Propane Dehydrogenation (PDH) Technologies and Plants in Saudi Arabia, American Scientific Research Journal for Engineering, Technology, and Sciences, 45, 49–63, 2018.
8. Zuo C., Su Q., Research Progress on Propylene Preparation by Propane Dehydrogenation, Molecules, 28, 3594, 2023..
9. Baldwin S.F.,Quadrennial Technology Review: An Assessment of Energy Technologies and Research Opportunities, Technical Report, US Department of energy, Washington DC, 2015.
10. Alper J., National Academies of Sciences, Engineering, and Medicine, The National Academies Press, Washington, DC, Section 4, 37–50, 2016.
11. Nawaz Z., Light Alkane Dehydrogenation to Light Olefin Technologies: A Comprehensive Review, Reviews in Chemical Engineering, 31,413-436, 2015.
12. Stevens D., Propane Dehydrogenation–Reactor and Product Recovery, Application Report, 1-5, 2016.
13. Xiao L., Ma F., Zhu Y., Sui Z., Zhou J., Zhou X., Improved Selectivity and Coke Resistance of Core-shell Alloy Catalysts for Propane Dehydrogenation from First Principles and Microkinetic Analysis, Chemical Engineering Journal, 377, 120049, 2019.
14. Farsi M., Dynamic Modelling, Simulation and Control of Isobutane Dehydrogenation in a Commercial Oleflex Process Considering Catalyst Deactivation, Journal of the Taiwan Institute of Chemical Engineers, 57, 18-25, 2015.
15. Trirahayu D. A., Process Simulation of Propylene Production from Prude Palm Oil by Hydrodeoxygenation and Propane Dehydrogenation, Journal of Physics: Conference Series, 1450, 012009, 2020.
16. Gupta P., The Profitable Path to Olefins Using UOP Oleflex™ Process, Elite Petrochemical Conference, Mumbai, India, October 11-12, 2017.
17. Millard M., Petrochemical Technology:Vision 2030, 16th International Conference Indian Petrochem, Mumbai, India October 30, 2014.
18. Agarwal A., A Design Approach for On-purpose Propylene Production with Safety and Sustainability Considerations, Master of Science Thesis, Texas A&M University, 2018.
19. Yang X., Liu G., Li Y., Zhang L., Wang X., Liu Y., Novel Pt–Ni Bimetallic Catalysts Pt(Ni)–LaFeO3/SiO2 via Lattice Atomic Confned Reduction for Highly Efcient Isobutane Dehydrogenation, Transactions of Tianjin University, 25, 245-257, 2019.
20. Walker K., Techno-economic Feasibility of Propane Dehydrogenation in Novel Membrane Reactors, Master Thesis, Eindhoven University of Technology, Department of Chemical Engineering, 2020.
21. Wang G., Lu K., Yin C., Meng F., Zhang Q., Yan X., Bing L., Wang F., Han D., One-step Fabrication of PtSn/-Al2O3 Catalysts with la Post-modification for Propane Dehydrogenation, Catalysts, 10, 1042, 2020.
22. Carter J.H., Bere T., Pitchers J.R., Hewes D.G., Vandegehuchte B.D., Kiely C.J., Taylor S.H., Hutchings G.J., Direct and Oxidative Dehydrogenation of Propane: From Catalyst Design to Industrial Application, Green Chemistry, 23, 9747, 2021.
23. Fernandez J.H., Guerra Y.,Polo E.P., Marquez E., Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene, Polymers, 14,3123, 2022.
24. Grande C. A., Advances in Pressure Swing Adsorption for Gas Separation, International Scholarly Research Network, ISRN Chemical Engineering, 2012, 982934, 2012.
25.The Line Group, www.linde-engineering.com, Hydrogen Recovery by Pressure Swing Adsorption, 23942_LCS_0816.
26. Luberti M., Ahn H., Review of Polybed Pressure Swing Adsorption for Hydrogen Purification, International Journal of Hydrogen Energy, 47, 10911-10933, 2022.
27. Luberti M., Ahn H., Review of Polybed Pressure Swing Adsorption for Hydrogen Purification, International Journal of Hydrogen Energy, 47, 10911-10933, 2022.
28. Monai M., Gambino M., Wannakao S., Weckhuysen B.M., Propane to Olefins Tandem Catalysis: A Selective Route toWards Light Olefins Production, Chemical Society Reviews, 50, 11503-11529, 2021.
29. Won W., Lee K. S., Lee S., Jung C., Repetitive Control and Online Optimization of Catofin Propane Process, Computers and Chemical Engineering, 34, 508-517, 2010.
30. Hu R., Li X., Sui Z., Ye G., Zhou X., Process Simulation and Optimization of Propane Dehydrogenation Combined with Selective Hydrogen Combustion, Chemical Engineering and Processing-Process Intensification, 143:107608, 2019.
31. Oudi A., Hajatipour M., Yarmohammadian S., Modeling and Simulation of Propane Dehydrogenation Radial Flow Reactors and Investigating the Effect of Coke Formation, Journal of Petroleum Research, 32, 131-141, 2022.
32. Monai M., Gambino M., Wannakao S., Weckhuysen B.M., Propane to Olefins Tandem Catalysis: A Selective Route Towards Light Olefins Production, Chemical Society Reviews, 50, 11503, 2021.
33. Seo S.T., Won W., Lee K.S., Jung C., Lee S., Repetitive Control of CATOFIN Process, Korean Journal of Chemical Engineering, 24, 921-926, 2007.
34. Won W., Lee K.S, Seo S., Online Optimization of CATOFIN Process, International Conference on Control, Automation and Systems, October 17-20, Seoul, South Korea, 250-255 2007.
35. Brune A., Morgenstern A.S., Hamel C., Analysis and Model-based Description of the Total Process of Periodic Deactivation and Regeneration of a VOx Catalyst for Selective Dehydrogenation of Propane, Catalysts, 10, 1374, 2020,