مروری برفرایند تولید افزایشی با چاپگرهای پنج بعدی و کاربرد آن ها
محورهای موضوعی : پلیمرها و چاپ سه بعدی
1 - گروه مكانيك
کلید واژه: تولید افزایشی, چاپگر پنج بعدی, چاپگر سه بعدی, پلیمر,
چکیده مقاله :
چاپ سه بعدی مدت زمان زیادی است که در زمینههای مختلف مهندسی، پزشکی، دندان پزشکی، هوافضا و دیگر صنایع مورد بحث و بررسی قرار گرفته است. در حالی که صنعت تولید افزایشی همچنان در حال کشف چاپگرهای سه بعدی جدید، مواد جدید و کاربردهای جدید است، تحقیقات در مورد سایر فناوریها نیز در حال انجام است. از جمله چاپ چهاربعدی کهتوانایی تغییر شکل اشیا چاپ شده سه بعدی را در طول زمان دارد.در واقع در چاپ چهاربعدی، بعد چهارم زمان است. محققان در دانشگاهها نیز مفهوم چاپ پنج بعدی را ارائه دادند. در این فناوری،چاپگرقابلیت ساخت قطعات را در پنج محور مختلف دارد. همچنین در صنایع پزشکی از چاپ پنج بعدی به عنوان بررسی تغییرات فیزیولوژیکی یاد شده است. با توجه به اینکه بیش از نیمی از قطعاتی که توسط روش ساخت افزایشی تولید میشوند، از پلیمر ها ساخته شده اند، آگاهی از آخرین فناوریچاپگرها برای پژوهشگران این حوزه مفید خواهد بود.
-
1. Eyers D.R., Potter A.T., Industrial Additive Manufacturing: A Manufacturing Systems Perspective, Computers in Industry, 92-93, 208-218, 2017.
2. Dezianian S., Study of Fatigue Behavior in Materials, Made fromAdditive Manufacturing Methods, BSc Thesis, Semnan University, 2020.
3. Yuan Siang L., Wan Ting S., Lay Poh T., Yunlong W., Yuekun L., Huaqiong L., 4D Printing and Stimuli-Responsive Materials in Biomedical Applications, Acta Biomaterialia, 92, 19-36, 2019.
4. Gladman A.S., Matsumoto E.A., Nuzzo R.G., Mahadevan L., Lewis J.A., Biomimetic 4D Printing, Nature Material, 15, 413-418, 2016.
5. Quanjin M., Rejab M.R.M., Idris M.S., Kumar N.M., Abdullah M.H., Reddy G.R., Recent 3D and 4D Intelligent Printing Technologies: A ComparativeReview and Future Perspective, Procedia Computer Science, 167, 1210-1219, 2020.
6. Somolinos C.S., 4D Printing: An Enabling Technology for Soft Robotics,Mechanically Responsive Materials for Soft Robotics, 2020.
7. Pei E., Loh G.H., Technological Considerations For 4D Printing: An Overview,Progress in Additive Manufacturing, 3, 95-107, 2018.
8. Leist S.K., Zhou J., Current Status of 4D Printing Technology and The Potential of Light-Reactive Smart Materials as 4D Printable Materials, Virtual and Physical Prototyping, 11(4): 249-262, 2016.https://doi.org/10.1080/17452759.2016.1198630.
9. Singh S., Ramakrishna S., Berto F., 3D Printing of Polymer Composites: A Short Review, Material Design & Processing Communications, 2, 97, 2020.https://doi.org/10.1002/mdp2.97.
10. Ntouanoglou K., Stavropoulos P., Mourtzis D., 4D Printing Prospects for the Aerospace Industry: ACritical Review, Procedia Manufacturing, 18, 120-129, 2018. https://doi.org/10.1016/j.promfg.2018.11.016.
11.Hadith Vakili A., Talebpour Z., Development of Separation Methods by PolymerTools Made with a 3D Printer, Iranian Journal of Research and Development of Polymer Technology, 4 (16), 5-18, 2020. http://www.irdpt.ir/WebUsers/irdpt/UploadFiles/OK/13981226236099-F.pdf.
12. Correia D.M., Fernandes L.C., Pereira N., Barbosa J.C., Serra J.P., Pinto R.S., Costa C.M., Lanceros-Mendez S., All Printed Soft Actuators based on Ionic Liquid/Polymer Hybrid Materials, Applied Materials Today, 22, 100928, 2021. https://doi.org/10.1016/j.apmt.2020.100928.
13. Javaid H., Haleem A., 4D Printing Applications in Medical Field: A Brief Review, Clinical Epidemiology and Global Health, 7(3), 317-321, 2019.
14. Booth M.J., Schild V.R., Graham A.D., Olof S.N., Bayley, H., Light-Activated Communication in Synthetic Tissues, Science Advances, 4(2), 1600056, 2016.
15. Miao S., Castro N., Nowicki M., Xia L., Cui H., Zhou X., Lee S.J., Sarkar K., Vozzi G., Tabata Y., Fisher J., Zhand L.G., 4D Printing of Polymeric Materials for Tissue and Organ Regeneration, Materials Today, 20(10), 577-591, 2017.
16. Hoa S.V., Rosca D.I., Formation of Letters in The Alphabet Using 4D Printing of Composites, Materials Today Communications, 25, 101115, 2020.
17. Abid H., Mohd J., 5D Printing and its Expected Applications in Orthopedics, Journal of Clinical Orthopedics and Trauma, 10, 809-810, 2019.
18. Abid H., Mohd J., Future Applications of Five-Dimensional Printing in Dentistry, Current Medicine Research and Practice, 9, 85-86, 2019.
19. Ghilan A., Chiriac A.P., Nita L.E., Rusu A.G., Neamtu I., Chiriac V.M., Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges, Journal of Polymers and the Environment, 28, 1345-1367, 2020.
20. Ravinder Reddy P., Anjani Devi P., Review on the Advancements to Additive Manufacturing-4D and 5D Printing, International Journal of Mechanical and Production Engineering Research and Development, 8, 397-402, 2018.
21. David J., Ethereal Machines wins CES 2018 'Best of Innovation' Award For Its Halo Hybrid 5D Printer, http://www.3ders.org/articles/20180111-ethereal-machines-wins-ces-2018-best-of-innovation-award-for-its-halo-hybrid-5d-printer.html, 2018.
22. Pramod K., Subarna R., Harsha H., Shweta B., Manish K., 4D and 5D Printing: Healthcare’s New Edge, 3D Printing Technology in Nanomedicine, 8, 143-163, 2019.
23. MERL, Mitsubishi Electric Research Laboratories, Gives 5D Printing a New Shot, http://3dprintingfromscratch.com/2016/07/merl-gives-5d-printing-a-new-shot, 2016.
24. Haleem A., Javaid M., Vaishya R., 5D Printing and Its Expected Applications in Orthopaedics, Journal of Clinical Orthopaedics and Trauma, 10(4), 809-810, 2019.
25. Erin A., Jane S., Natalie E., Robert J., Robert Shen K., Mark S., Shanda H., From 3-Dimensional Printing to 5-Dimensional Printing: Enhancing Thoracic Surgical Planning and Resection of Complex Tumors, The Annals of Thoracic Surgery, 101, 1958-1962, 2016.
26. Sathe G., Meet Ethereal Machine's Halo, a '5D Printer' That's Just Won theBest of Innovation CES 2018 Award, Gadgets 360 an NDTV Venture, https://gadgets.ndtv.com/others/features/meet-ethereal-machines-halo-a-5d-printer-thats-justwon-the-best-of-innovation-ces-2018-award-1779765, 2017.
27. Sadiq H.A., Pradeep P.P., Review on 4D and 5D Printing Technology, International Research Journal of Engineering and Technology, 7, 744-751, 2020.
28. Abid H., Mohd J., Expected Applications of Five-Dimensional (5D) Printing in the MedicalField, Current Medicine Research and Practice, 9, 2019.
29. Foresti R., 5D Printing of Nano-laden FibreAerogel, European Journal of Applied Engineering and Scientific Research, 1, 16, 2020.
30. Azadi M., Dadashi A., Dezianian S., Kianifar M., Torkaman, S., Chiyani M., High-Cycle Bending Fatigue Properties of Additive-Manufactured ABS and PLA Polymers Fabricated by Fused Deposition Modeling 3D-Printing, Forces in Mechanics, 3, 100016, 2021.
31. Donate R., Monzon M., Aleman-Dominguez M.E., Additive Manufacturing of PLA-Based Scaffolds Intended for Bone Regeneration and Strategies to Improve Their Biological Properties, e-Polymers, 20(1), 571-599, 2020,
32. Genova T., Rato I., Carossa M., Motta C., Cavagnetto D., Mussano F., Advances on Bone Substitutes through 3D Bioprinting, International Journal of Molecular Sciences, 21(19), 7012, 2020.
33. Gregor A., Filova E., Novak M., Kronek J., Chlup H., Buzgo M., Blahnova V., Lukasova V., Bartos M., Necas A., Hosek J., Designing of PLA Scaffolds for Bone Tissue Replacement Fabricated by Ordinary Commercial 3D Printer, Journal of Biological Engineering, 11, 31, 2017.
34. Prasansha R., Balasubramanian K., Breakthrough in The Printing Tactics forStimuli-Responsive Materials: 4D Printing, Chemical Engineering Journal, 366, 264-304, 2019..