مروري بر کاربرد پليمرها در پزشکي بازساختي
محورهای موضوعی :الهام سبزی دیزجیکان 1 , مرتضی نصیری 2 * , فرهنگ عباسی 3
1 - دانشگاه صنعتی سهند
2 - دانشگاه صنعتی سهند تبریز
3 - دانشگاه صنعتی سهند تبریز
کلید واژه: پزشکي بازساختيپليمرهاي هوشمندفناوري ورقه سلولياصلاح سطح,
چکیده مقاله :
در مقاله حاضر به بررسي کاربرد پليمرهاي مختلف در زمينه پزشکي بازساختي (regenerative medicine) پرداخته مي شود. پزشکي بازساختي به عنوان شاخهاي از علم نوين پزشکي با هدف ترميم و احياي بافت، ارگان يا اندام آسيبديده و حتي در مواردي از دست رفته ميباشد. استفاده از سلولهاي بنيادي (stem cells) براي درمان بيماريهاي مختلف يکي از موضوعات جالب توجه در پزشکي بازساختي ميباشد. با توجه به حساسيت بالاي چگونگي استفاده و نيز حمل و نقل اين سلولها روشهاي مختلفي براي اين منظور پيشنهاد شده است که شامل روشهاي قديميتر مانند سلول درماني (cell therapy) و روشهاي نوين مبتني بر استفاده از داربستها و سطوح هوشمند ميباشد. براي ساخت داربستها بازهي وسيعي از پليمرهاي طبيعي و سنتزي مورد استفاده قرار گرفتهاند. براي ساخت سطوح هوشمند، روشهاي اصلاح سطح موردتوجه قرار گرفتهاند که براي اين منظور از پليمرهاي پاسخگو به محرکهاي مختلف به شکل برسهاي پليمري بر سطح استفاده ميشود.
-
1. Tang X., Daneshmandi L., Awale G., Nair L.S.Laurencin C.T., Skeletal Muscle Regenerative Engineering, Regenerative Engineering and Translational Medicine, 5, 233-251, 2019.
2. Alghuwainem A., Alshareeda A.T.Alsowayan B., Scaffold-Free 3-D Cell Sheet Technique Bridges the Gap between 2-D Cell Culture and Animal Models, International journal of molecular sciences, 20, 4926, 2019.
3. Wei M., Gao Y., Li X.Serpe M.J., Stimuli-responsive polymers and their applications, Polymer Chemistry, 8, 127-143, 2017.
4. Sánchez A., Schimmang T.García-Sancho J., Cell and tissue therapy in regenerative medicine, Springer, 2012.
5. Katarzyna R., Adult stem cell therapy for cardiac repair in patients after acute myocardial infarction leading to ischemic heart failure: an overview of evidence from the recent clinical trials, Current cardiology reviews, 13, 223-231, 2017.
6. Shimizu T., Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues, Circulation Journal, CJ-14-0973, 2014.
7. Kinoshita S., Koizumi N., Ueno M., Okumura N., Imai K., Tanaka H., Yamamoto Y., Nakamura T., Inatomi T.Bush J., Injection of cultured cells with a ROCK inhibitor for bullous keratopathy, New England Journal of Medicine, 378, 995-1003, 2018.
8. Ji S.Guvendiren M., Recent advances in bioink design for 3D bioprinting of tissues and organs, Frontiers in bioengineering and biotechnology, 5, 23, 2017.
9. Ashammakhi N., Ahadian S., Xu C., Montazerian H., Ko H., Nasiri R., Barros N.Khademhosseini A., Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs, Materials Today Bio, , 2019.
10. Ashammakhi N., Ndreu A., Yang Y., Ylikauppila H.Nikkola L., Nanofiber-based scaffolds for tissue engineering, European journal of plastic surgery, 35, 135-149, 2012.
11. Hiremath N.Bhat G., Melt blown polymeric nanofibers for medical applications-an overview, Nanosci Technol, 2, 1-9, 2015.
12. Kumar V., Naqvi S.Gopinath P., Applications of Nanofibers in Tissue Engineering, Elsevier, 2018.
13. Pathak C., Vaidya F.U.Pandey S.M., Mechanism for Development of Nanobased Drug Delivery System, Elsevier, 2019.
14. Wang W., Nie W., Zhou X., Feng W., Chen L., Zhang Q., You Z., Shi Q., Peng C.He C., Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique, Acta biomaterialia, 79, 168-181, 2018.
15. Yu Y., Sun B., Yi C.Mo X., Stem cell homing-based tissue engineering using bioactive materials, Frontiers of Materials Science, 11, 93-105, 2017.
16. Hasan A., Tissue Engineering for Artificial Organs: Regenerative Medicine, Smart Diagnostics and Personalized Medicine, John Wiley & Sons, 2017.
17. Kobayashi J., Kikuchi A., Aoyagi T.Okano T., Cell sheet tissue engineering: Cell sheet preparation, harvesting/manipulation, and transplantation, Journal of Biomedical Materials Research Part A, 107, 955-967, 2019.
18. Zhu Y.J.Chen F., pH‐Responsive Drug‐Delivery Systems, Chemistry–An Asian Journal, 10, 284-305, 2015.
19. Schmaljohann D., Thermo-and pH-responsive polymers in drug delivery, Advanced drug delivery reviews, 58, 1655-1670, 2006.
20. Zhao Y., Ren W., Zhong T., Zhang S., Huang D., Guo Y., Yao X., Wang C., Zhang W.-Q.Zhang X., Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity, Journal of controlled release, 222, 56-66, 2016.
21. Hao Y., Cui H., Meng J.Wang S., Photo-responsive smart surfaces with controllable cell adhesion, Journal of Photochemistry and Photobiology A: Chemistry, 355, 202-211, 2018.
22. Wang D., Jiao P., Wang J., Zhang Q., Feng L.Yang Z., Fast photo‐switched wettability and color of surfaces coated with polymer brushes containing spiropyran, Journal of Applied Polymer Science, 125, 870-875, 2012.
23. Kim E., Lee J., Kim D., Lee K.E., Han S.S., Lim N., Kang J., Park C.G.Kim K., Solvent-responsive polymer nanocapsules with controlled permeability: encapsulation and release of a fluorescent dye by swelling and deswelling, Chemical Communications, 1472-1474, 2009.
24. Nagase K., Yamato M., Kanazawa H.Okano T., Poly (N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications, Biomaterials, 153, 27-48, 2018.
25. Sudo Y., Kawai R., Sakai H., Kikuchi R., Nabae Y., Hayakawa T.Kakimoto M.-a., Star-shaped thermoresponsive polymers with various functional groups for cell sheet engineering, Langmuir, 34, 653-662, 2018.
26. Kikuchi A.Okano T., Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs, Journal of Controlled Release, 101, 69-84, 2005.
27. Kobayashi J., Akiyama Y., Yamato M.Okano T., Biomaterials: Temperature-Responsive Polymer, 2011.
28. Nishida K., Yamato M., Hayashida Y., Watanabe K., Yamamoto K., Adachi E., Nagai S., Kikuchi A., Maeda N.Watanabe H., Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium, New England Journal of Medicine, 351, 1187-1196, 2004.
29. Jones C.D.Lyon L.A., Synthesis and characterization of multiresponsive core− shell microgels, Macromolecules, 33, 8301-8306, 2000.
30. Chen T., Ferris R., Zhang J., Ducker R.Zauscher S., Stimulus-responsive polymer brushes on surfaces: Transduction mechanisms and applications, Progress in Polymer Science, 35, 94-112, 2010.