هیدروژل های نانوکامپوزیتی حافظه شکلی اکريلاتی حساس به تحریک دمایی
محورهای موضوعی :
1 - گروه پليمر
کلید واژه: هیدروژل نانوکامپوزیتی اثر حافظه شکلی تحریک دمایی مستقیم و غیر مستقیم, هیدروژل پلی اکریلاتی,
چکیده مقاله :
ماهیت برنامه ریزی شونده در هیدروژل های حافظه شکلی، آن ها را از سایر هیدروژل های هوشمند مجزا می کند. این دسته از هیدروژل ها، با وجود دارا بودن خصوصیات خوب بیولوژیکی و کاربردهای برجسته به ویژه در صنایع پزشکی، از استحکام مکانیکی کافی برخوردار نیستند که از جمله نقایص مهم آن ها به شمار می رود. از این رو، در راستای پیشرفت های انجام شده و با استفاده از نانوفناوری، از هیدروژل های نانوکامپوزیتی به دلیل خصوصیات مکانیکی منحصر به فرد و همچنین روش تهیه آسان، به عنوان مهم ترین دسته از هیدروژل ها با خواص مکانیکی بهبود یافته یاد می شود. از سویی دیگر، در حضور نانوذرات هادی می توان تحریک غیرمستقیم دمایی ایجاد کرده، بازیابی شکل موقت به دائم را مشاهده نمود. درنتیجه با تلفیق سه زمینه هیدروژل، حافظه شکلی و نانوکامپوزیت می توان علاوه بر دستیابی به خصوصیت حافظه شکلی در برابر تحریک های دمایی مستقیم و غیرمستقیم، افزایش استحکام مکانیکی را نیز در این سامانه ها تامین نمود. اين مقاله با توجه به انواع متعدد هيدروژلها و نانوکامپوزيتهای حاصل از آنها، پس از بيان کليات، به صورت ويژه بر هيدروژلهای اکريلاتی متمرکز است.
-
1. Li H., Zhong J., Meng J., Xian G., The Reinforcement Efficiency of Carbon Nanotubes/Shape Memory Polymer Nanocomposites, Composites Part B: Engineering, 44, 508–516, 2013.
2. Annabi N., Tamayol A., Uquillas J. A., Akbari M., Bertassoni L. E., Cha C., Camci-Unal G., Dokmeci M. R., Peppas N. A., Khademhosseini A., 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine, Advanced Materials, 26, 85–124, 2014.
3. Osada Y., Matsuda A., Shape Memory in Hydrogels, Nature, 376, 219, 1995.
4. Hron P., Šlechtová J., Shape Memory of Composites Based on Silicone Rubber and Polyacrylamide Hydrogel, Die Angewandte Makromolekulare Chemie, 268, 29-35, 1999.
5. Merline J. D., Nair C. P. R., Gouri C., Shrisudha T., Ninan K. N., Shape Memory Characterization of Polytetra Methylene Oxide/Poly (Acrylic Acid-co-Acrylonitrile) Complexed Gel, Journal of Materials Science, 42, 5897–902, 2007.
6. Hao J., Weiss R. A., Mechanically Tough, Thermally Activated Shape Memory Hydrogels, ACS Macro Letters, 2, 86–89, 2013.
7. Hasnat Kabir M., Hazama T., Watanabe Y., Gong J., Murase K., Sunada T., Furukawa H., Smart Hydrogel with Shape Memory for Biomedical Applications, Journal of the Taiwan Institute of Chemical Engineers, 45, 3134–3138, 2014.
8. Zhang Y., Gao H., Wang H., Xu Z., Chen X., Liu B., Shi Y., Lu Y., Wen L., Li Y., Li Z., Men Y., Feng X. Liu W., Radiopaque Highly Stiff and Tough Shape Memory Hydrogel Microcoils for Permanent Embolization of Arteries, Advanced Functional Materials, 28, 1–11, 2018.
9. Liang R., Yu H., Wang L., Lin L., Wang N. Naveed K. U. R., Highly Tough Hydrogels with the Body Temperature-Responsive Shape Memory Effect, ACS Applied Materials and Interfaces, 11, 43563–43572, 2019.
10. Damouny C. W., Silverstein M. S., Hydrogel-filled, Semi-crystalline, Nanoparticle-crosslinked, Porous Polymers from Emulsion Templating: Structure, Properties, and Shape Memory, Polymer, 82, 262–273, 2015.
11. Zhang J. L., Huang W. M., Gao G., Fu J., Zhou Y., Salvekar A. V., Venkatraman S. S., Wong Y. S., Tay K. H., Birch W. R., Shape Memory/Change Effect in A Double Network Nanocomposite Tough Hydrogel, European Polymer Journal, 58, 41–51, 2014.
12. Xu B., Li H., Wang Y., Zhang G., Zhang Q., Nanocomposite Hydrogels with High Strength Cross-linked by Titania, RSC Advances, 3, 7233-7236, 2013.
13. Zhu P., Deng Y., Wang C., Graphene/Cyclodextrin-based Nanocomposite Hydrogel with Enhanced Strength and Thermo-Responsive Ability, Carbohydrate Polymers, 174, 804-811, 2017.
14. Obiweluozor F. O., GhavamiNejad A., Maharjan B., Kim J., Park C. H., Kim C. S., A Mussel Inspired Self-Expandable Tubular Hydrogel with Shape Memory Under NIR for Potential Biomedical Applications, Journal of Materials Chemistry: B, 5, 5373–5379, 2017.
15. Wei Y., Zeng Q., Wang M., Huang J., Guo X., Wang L., Near-infrared Light-responsive Electrochemical Protein Imprinting Biosensor Based on A Shape Memory Conducting Hydrogel, Biosensors and Bioelectronics, 131, 156–162, 2019.
16. Wang C., Liu X., Wulf V., Vázquez-González M., Fadeev M., Willner I., DNA-Based Hydrogels Loaded with Au Nanoparticles or Au Nanorods: Thermoresponsive Plasmonic Matrices for Shape-Memory, Self-Healing, Controlled Release, and Mechanical Applications, ACS Nano, 13, 3424-3433, 2019.
17. Dai C. F., Du C., Xue Y., Zhang X. N., Zheng S. Y., Liu K., Wu Z. L., Zheng Q., Photodirected Morphing Structures of Nanocomposite Shape Memory Hydrogel with High Stiffness and Toughness, ACS Applied Materials and Interfaces, 11, 43631–43640, 2019.
18. سونیا نوروزی اصفهانی، اثر نانوذرات هادی بر پاسخ¬گویی هیدروژل حافظه شکلی اکریل¬آمیدی، پایان نامه کارشناسی ارشد، گروه مهندسی پلیمر، دانشگاه تربیت مدرس، 1398.