هیبریدها و کامپوزیت های پلیمر/چارچوب آلی-فلزی (Polymer/MOF): روش های سنتز و کاربردها
محورهای موضوعی : پليمرها و نانوفناوریمحسن صدرالدینی 1 , امین علمداری 2
1 - دانشگاه ارومیه
2 - گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه ارومیه، ارومیه، ایران
کلید واژه: چارچوب آلی-فلزی, نانومتخلخل, هیبرید پلیمر/چارچوب آلی-فلزی, کامپوزیت,
چکیده مقاله :
چارچوبهای آلی-فلزی (MOF) یا پلیمرهای کئوردیناسیونی متخلخل از خودآرایی گرههای فلزی و پیوندهای آلی تشکیل میشوند که چارچوب بلوری نانومتخلخل را ایجاد می کنند. تخلخل بسیار بالا، مساحت سطح ویژه بالا، اندازه منافذ قابل تنظیم و پایداری خوب از شاخص¬ترین خواص MOF ها هستند. روند نوظهور در تحقیقات MOF ها، هیبریدسازی با مواد انعطاف¬پذیر نظیر پلیمرها است. پلیمرها دارای ویژگیهای منحصربهفردی مانند نرمی، پایداری حرارتی و شیمیایی، خواص نوری مناسب و فرایندپذیری آسان هستند که میتوانند با MOF ها ترکیب شوند تا ساختارهای هیبریدی با معماری پیچیده و خواص منحصربهفرد پدید آورند. از مهم ترین کاربردهای بدیع هیبریدهای پلیمر/MOF می توان به جداسازی و جذب گاز، غشاهای تبادل یون و نانوصافی، حسگرها، کاتالیزورها، زیستپزشکی و ... اشاره کرد. هدف از این مقاله بررسی انواع روش های هیبریدسازی MOF ها و پلیمرها و همچنین کاربردهای جذاب این مواد هیبریدی است.
Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are formed through the self-assembly of metal nodes and organic bonds, resulting in a nanoporous crystalline framework. High porosity, high specific surface area, adjustable pore size and good stability are some of their most significant attributes. Hybridization with flexible materials like polymers is an emerging trend in MOF research. Polymers possess distinctive characteristics, including softness, thermal and chemical stability, suitable optical properties, and ease of processing. These properties can be combined with MOFs to produce hybrid structures with intricate architecture and distinctive characteristics. Among the most important novel applications of the polymer/MOF hybrids are gas separation and adsorption, ion exchange membranes and nanofiltration, sensors, catalysts, biomedical, etc. The objective of this article is to investigate the hybridization technique of MOFs and polymers, as well as the attractive applications of these hybrid materials. Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are formed through the self-assembly of metal nodes and organic bonds, resulting in a nanoporous crystalline framework. High porosity, high specific surface area, adjustable pore size and good stability are some of their most significant attributes. Hybridization with flexible materials like polymers is an emerging trend in MOF research. Polymers possess distinctive characteristics, including softness, thermal and chemical stability, suitable optical properties, and ease of processing. These properties can be combined with MOFs to produce hybrid structures with intricate architecture and distinctive characteristics.
1- Yusuf, V.F., N.I. Malek., and S.K. Kailasa., Review on Metal–Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment, ACS omega, 7(49), 44507-44531, 2022.
2- Landaverde-Alvarado, C., A.J. Morris., and S.M. Martin., Characterization of Gas Permeation in the Pores of Zn (II)-Based Metal Organic Framework (MOF)/Polymer Composite Membranes, Separation Science and Technology, 55(14), 2604-2614, 2020.
3- Y. Xue., S. Zheng., H. Xue., Metal–Organic Framework Composites and Their Electrochemical Applications, Journal of Materials Chemistry A, 7(13), 7301-7327, 2019.
4- Dalal Alezi., Youssef Belmabkhout., Mikhail Suyetin., Prashant M. Bhatt., MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based Soc-MOF for CH4, O2, and CO2 Storage, Journal of the American Chemical Society, 137(41), 13308-13318, 2015.
5- Schmidt, B.V., Metal‐Organic Frameworks in Polymer Science: Polymerization Catalysis, Polymerization Environment, and Hybrid Materials, Macromolecular Rapid Communications, 41(1), 1900333, 2020.
6- R. Semino., J. Moreton., N. Ramsahye., S. Cohen and G. Maurin., Understanding ohe Origins Of Metal–Organic Framework/Polymer Compatibility, Chem. Sci, 9, 315-324, 2018.
7- Kitao, T., and T. Uemura., Polymers in Metal–Organic Frameworks: from Nanostructured Chain Assemblies to New Functional Materials, Chemistry Letters, 49(6), 624-632, 2020.
8- T. Kitao., Y. Zhang., S. Kitagawa., B. Wang and T. Uemura., Hybridization of MOFs and Polymers, Chemical Society Reviews, 46(11), 3108-3133, 2017.
9- T. Uemura., K. Kitagawa., S. Horike., T. Kawamura., S. Kitagawa., M. Mizuno., Kazunaka Endo., Radical Polymerisation of Styrene in Porous Coordination Polymers, Chemical communications, (48), 5968-5970, 2005.
10- T. Uemura., Y. Ono., K. Kitagawa and S. Kitagawa., Radical Polymerization of Vinyl Monomers in Porous Coordination Polymers: Nanochannel Size Effects on Reactivity, Molecular Weight, and Stereostructure, Macromolecules, 41(1), 87-94, 2008.
11- T. Uemura., T. Kaseda., Y. Sasaki., M. Inukai., T. Toriyama., A. Takahara., Hiroshi Jinnai., Susumu Kitagawaet., Mixing of Immiscible Polymers Using Nanoporous Coordination Templates, Nature communications, 6(1), 7473, 2015.
12- Y. Kobayashi.., Y. Horie, K. Honjo., T. Uemura and S. Kitagawa., he Controlled Synthesis of Polyglucose Iin One-Dimensional Coordination Nanochannels, Chemical Communications, 52(29), 5156-5159, 2016.
13- N. Yanai., T. Uemura., M. Ohba., Y. Kadowaki., M. Maesato., M. Takenaka., Shotaro Nishitsuji., Hirokazu Hasegawa., Susumu Kitagawa., Fabrication of Two‐Dimensional Polymer Arrays: Template Synthesis of Polypyrrole Between Redox‐Active Coordination Nanoslits, Angewandte Chemie International Edition, 47(51), 9883-9886, 2008.
14- G. Distefano., H. Suzuki., M. Tsujimoto., S. Isoda., S. Bracco., A. Comotti., Piero Sozzani., Takashi Uemura., Susumu Kitagawa., Highly Ordered Alignment of a Vinyl Polymer by Host–Guest Cross-Polymerization, Nature Chemistry, 5(4), 335-341, 2013.
15- Z. Zhang., H. T. H. Nguyen., S. A. Miller and S. M. Cohen., Polymofs: a Class of Interconvertible Polymer‐Metal‐Organic‐Framework Hybrid Materials, Angewandte Chemie International Edition, 54(21), 6152-6157, 2015.
16- D. Giliopoulos., A. Zamboulis., D. Giannakoudakis., D. Bikiaris and K. Triantafyllidis., Polymer/Metal Organic Framework (MOF) Nanocomposites for Biomedical Applications, Molecules, 25(1), 185, 2020.
17- Nagata S., K. Kokado., Metal–Organic Framework Tethering PNIPAM for ON–OFF Controlled Release in Solution, Chemical communications, 51(41), 8614-8617, 2015.
18- Y. Zhang., X. Feng., H. Li., Y. Chen., J. Zhao., S. Wang., Photoinduced Postsynthetic Polymerization f Aa Metal–Organic Framework Toward a Flexible Stand‐Alone Membrane, Angewandte Chemie International Edition, 54(14), 4259-4263, 2015.
19- K. Xie., Q. Fu., Y. He., J. Kim., S. J. Goh., E. Nam., G. G. Qiao and P. A. Webley., Synthesis of Well Dispersed Polymer Grafted Metal–Organic Framework Nanoparticles, Chemical Communications, 51(85), 15566-15569, 2015.
20- B. Le Ouay., C. Watanabe., S. Mochizuki., M. Takayanagi., M. Nagaoka., T. Kitao., Selective Sorting of Polymers with Different Terminal Groups Using Metal-Organic Frameworks, Nature communications, 9(1), 3635, 2018.
21- J. Park., Y. S. Chae., D. W. Kang., M. Kang., J. H. Choe., S. Kim., Shaping of a Metal–Organic Framework–Polymer Composite and Its CO2 Adsorption Performances from Humid Indoor Air, ACS Applied Materials & Interfaces, 13(21), 25421-25427, 2021.
22- C. Chen., H. Zhu., B.-G. Li and S. Zhu., Fabrication of Metal–Organic Framework/Polymer Composites via a One-Pot Solvent Crystal Template Strategy, Acs Applied Polymer Materials, 3(4), 2038-2044, 2021.
23- N. Ding., H. Li., X. Feng., Q. Wang., S. Wang., L. Ma., Partitioning MOF-5 into Confined and Hydrophobic Compartments for Carbon Capture under Humid Conditions, Journal of the American Chemical Society, 138(32), 10100-10103, 2016.
24- Bondar, V., B. Freeman, and I. Pinnau., Gas Transport Properties of Poly (Ether‐B‐Amide) Segmented Block Copolymers, Journal of Polymer Science Part B: Polymer Physics, 38(15), 2051-2062, 2000.
25- B. Le Ouay., M. Boudot., T. Kitao., T. Yanagida., S. Kitagawa and T. Uemura., Nanostructuration of PEDOT in Porous Coordination Polymers for Tunable Porosity and Conductivity, Journal of the American Chemical Society, 138(32), 10088-10091, 2016.
26- Yuwei Shen, Antoine Tissot and Christian Serre., Recent Progress on MOF-based Optical Sensors for VOC Sensing, , Chem. Sci, 13, 13978, 2022.
27- S. Basu., M. Maes., A. Cano-Odena., L. Alaerts., D. E. De Vos and I. F. Vankelecom., Solvent Resistant Nanofiltration (SRNF) Membranes Based on Metal-Organic Frameworks, Journal of membrane science, 344(1-2), 190-198, 2009.
28- S. Sorribas., P. Gorgojo., C. Téllez., J. Coronas., High Flux Thin Film Nanocomposite Membranes Based on Metal–Organic Frameworks for Organic Solvent Nanofiltration, Journal of the American Chemical Society, 135(40), 15201-15208, 2013.
29- A. C. McKinlay., R. E. Morris., P. Horcajada., G. Férey., R. Gref., P. Couvreur., Biomofs: Metal–Organic Frameworks for Biological and Medical Applications, Angewandte Chemie International Edition, 49(36), 6260-6266, 2010.
30- Chowdhury, M.A., Metal‐Organic‐Frameworks for Biomedical Applications in Drug Delivery, Aand as MRI Contrast Agents, Journal of Biomedical Materials Research Part A, 105(4), 1184-1194, 2017.