A review of the study and application of the application of organic-metal nanostructured frameworks as a membrane in desalination of seawater
Subject Areas :yousef ghorbaniy 1 * , Seyyed Mehdi Ghoreishi 2 , Milad Ghani 3
1 - kashan
2 - kashan
3 - kashan
Keywords: MOFs, Membrane, desalination, Sea Water,
Abstract :
Due to the increase in population and as a result of the increase in economic activities in the world, the demand for water consumption has increased significantly. Seawater covers two-thirds of the earth's surface, so it makes sense to use these resources to provide drinking water and could be an important component in solving the problem of water scarcity. In addition, existing technologies for water treatment to meet There are certain water quality requirements, so reusing used water to address water shortages can be further explored. In recent years, organic metal frameworks have received much attention due to their interesting chemistry and potential applications. In the science of separation, researchers have extensively studied organic-metal frameworks for gas separation and water treatment. In this paper, the aim is to investigate the possibility of using organic-metal frameworks for membrane desalination. Therefore, after a brief introduction of organic-metallic frameworks, several methods for preparing membranes of organic-metallic frameworks, water desalination techniques and methods of application of organic-metallic frameworks and finally membranes of organic-metallic frameworks for different applications of water Such as desalination, nanofiltration, ultrafiltration and microfiltration are considered. The use of organic-metal frameworks as membranes in water treatment is still in its infancy compared to other applications such as gas separation.
[1] M. Kummu, P.J. Ward, H. de Moel, O. Varis, Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia, Environ. Res. Lett. 5 (2010) 1–10.
[2] B. Hua, H. Xiong, M. Kadhom, L. Wang, G. Zhu, J. Yang, G. Cunningham, B. Deng, Physico-chemical processes, Water Environ. Res. 89 (10) (2017) 974–1028.
[3] J. Cadotte, Interfacially Synthesized Reverse Osmosis Membrane. U.S. Patent4,277,344, 7 July 1981.
[4] H. Dong, L. Zhao, L. Zhang, H. Chen, C. Gao, W.S. Winston Ho, High-flux reverse osmosis membranes in corporate with NaY zeolite nanoparticles for brackish water desalination, J. Membr. Sci. 476 (2015) 373–383.
[5] M. Kadhom, J. Yin, B. Deng, A thin film nanocomposite membrane with MCM-41 silica nanoparticles for brackish water purification, Membranes 6 (4) (2016) 1–12.
[6] D. Emadzadeh, W.J. Lau, T. Matsuura, A.F. Ismail, M. Rahbari-Sisakht, Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization, J. Membr. Sci. 449 (2014)74–85.
[7] W. Li, Y. Zhang, Q. Li, G. Zhang, Metal-organic framework composite membranes: synthesis and separation applications, Chem. Eng. Sci. 135 (2015) 232–257.
[8] O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q.Snurr, S.T. Nguyen, A.Ö. Yazaydin, J.T. Hupp, Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134 (36) (2012) 15016–15021.
[9] H. Furukawa, Y.B. Go, N. Ko, Y.K. Park, F.J. Uribe-Romo, J. Kim, M. O’Keeffe, O.M. Yaghi, Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals, Inorg. Chem. 50 (18) (2011) 9147–9152.
[10] Q. Liu, N. Wang, J. Caro, A. Huang, Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes, J. Am. Chem. Soc. 135 (2013) 17679–17682.
[11] S.R. Venna, M.A. Carreon, Highly permeable zeolite imidazolate framework-8 membranes for CO2 /CH4 separation, J. Am. Chem. Soc. 132 (2010) 76–78.
[12] Y. Pan, B. Wang, Z. Pan, Synthesis of ceramic hollow fiber supported zeolitic 4 - imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability, J. Membr. Sci. 421–422 (2012) 292–298.
[13] X. Zhang, Y. Liu, L. Kong, H. Liu, J. Qiu, W. Han, L.-T. Weng, K.L. Yeung, W. Zhu, A simple and scalable method for preparing low-defect ZIF-8 tubular membranes, J. Mater. Chem. A 1 (2013) 10635–10638.
[14] V. Guerrero, Y. Yoo, M.C. McCarthya, H.-K. Jeong, HKUST-1 membranes on porous supports using secondary growth, J. Mater. Chem. 20 (2010) 3938–3943.
[15] Y. Mao, W. Cao, J. Li, Y. Liu, Y. Ying, L. Suna, X. Peng, Enhanced gas separation through well-intergrown MOF membranes: seed morphology and crystal growth effects, J. Mater. Chem. A 1 (38) (2013) 11711–11716.
[16] J. Nan, X. Dong, W. Wang, W. Jin, N. Xu, Step-by-step seeding procedure for preparing HKUST-1 membrane on porous r-alumina support, Langmuir 27 (2011) 4309–4312.
[17] B. Zornoza, A. Martinez-Joaristi, P. Serra-Crespo, C. Tellez, J. Coronas, J. Gascon, F. Kapteijn, Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures, Chem. Commun. 47 (2011) 9522–9524.
[18] D. Ma, S.B. Peh, G. Han, S.B. Chen, Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection, ACS Appl. Mater. Interfaces 9 (2017) 7523–7534.
[19] S. Sorribas, P. Gorgojo, C. Tellez, J. Coronas, A.G. Livingston, High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration, J. Am. Chem. Soc. 135 (2013) 15201–15208.
[20] M. Wu, H. Ye, F. Zhao, B. Zeng, High-quality metal-organic framework zif-8 membrane supported on electrodeposited zno/2-methylimidazole nanocomposite: efficient adsorbent for the enrichment of acidic drugs, Sci. Rep. 7 (39778) (2017) 1–9.
[21] M. Wang, X. Xu, Y. Liu, Y. Li, T. Lu, L. Pan, From metal-organic frameworks to porous carbons: a promising strategy to prepare high-performance electrode materials for capacitive deionization, Carbon 108 (2016) 433–439.
[22] T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci. 281 (2006) 70–87.
[23] J.-Y. Lee, Q. She, F. Huo, C.Y. Tang, Metal-organic framework-based porous matrix membranes for improving mass transfer in forward osmosis membranes,
J. Membr. Sci. 492 (2015) 392–399.
[24] E. Elsayed, R. AL-Dadah, S. Mahmoud, P.A. Anderson, A. Elsayed, P.G. Yousef, CPO-27(Ni), aluminium fumarate and MIL-101(Cr) MOF materials for adsorption water desalination, Desalination 406 (2017) 25–36.
[25] H. Kim, H.J. Cho, S. Narayanan, S. Yang, H. Furukawa, S. Schiffres, X. Li, Y.-B. Zhang, J. Jiang, O.M. Yaghi, E.N. Wang, Characterization of adsorption enthalpy of novel water-stable zeolites and metal-organic frameworks, Sci. Rep. 6 (2016) 1–8.
[26] R. Zhang, S. Ji, N. Wang, L. Wang, G. Zhang, J.-R. Li, Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes, Angew. Chem. Int. Ed. 53 (2014) 9775–9779.
[27] N. Yin, K. Wang, L. Wang, Z. Li, Amino-functionalized MOFs combining ceramic membrane ultrafiltration for Pb(II) removal, Chem. Eng. J. 306 (2016) 619–628.
[28] D. Ragab, H.G. Gomaa, R. Sabouni, M. Salem, M. Ren, J. Zhu, Micropollutants removal from water using microfiltration membrane modified with ZIF-8 metal organic frameworks (MOFs), Chem. Eng. J. 300 (2016) 273–279.
[29] Y. Guo, X. Wang, P. Hu, X. Peng, ZIF-8 coated polyvinylidenefluoride (PVDF) hollow fiber for highly efficient separation of small dye molecules, Appl. Mater. Today 5 (2016) 103–110.
[30] Y. Ying, W. Ying, Q. Li, D. Meng, G. Ren, R. Yan, X. Peng, Recent advances of nanomaterial-based membrane for water purification, Appl. Mater. Today 7 (2017) 144–158.