Enhancement of Silicone Coatings Performance to Deal with the Effects of Air Pollution on the Efficiency of Electrical Applications
Subject Areas :
Sahar Abdollahi Baghban
1
*
,
Narges Rabbanikhah
2
1 -
2 - Department of Polymer and Color Engineering, Amirkabir University of Technology, Tehran, Iran.
Keywords: Silicon-rubber, hydrophobic and self-cleaning coatings, Surface modification, Micro and nanoparticles, Electrical Insulator.,
Abstract :
This review article examines the methods for improving the performance of silicone coatings for electrical insulators under harsh and polluted environmental conditions. To improve the properties of silicone coatings, the application of micrometric, nanometric, and mixed micro/nanoparticle fillers (inorganic oxides: silica, nanoclay, CaCO3, ZnO, TiO2, Ta2O5, Co3O4, SnO2, aluminum nitride (AlN), boron nitride, barium titanate, aluminum trihydroxide (ATH) and organic fillers: carbon nanotubes (CNT), multi-walled CNTs, montmorillonite, and graphene oxide) have been investigated. The results revealed that the introduction of nano and micro fillers with optimal ratios such as micro and nanoparticles of silica and AlN in the coating improved the mechanical and tensile strength of the coatings, increased the superhydrophobicity, reduced the effects of aging and degradation caused by UV radiation, thermal and pollution erosion, improved the dielectric strength and surface stability against electrical discharge, reduced the leakage current, and also increased the tracking resistance. Consequently, it was reported that silicone-rubber-ethylene propylene diene monomer rubber coatings containing modified silica nanoparticles, ATH, UV stabilizers, and silicone oil, demonstrated the highest hydrophobicity with improved surface roughness and self-cleaning properties (water drop contact angle: 161º). Accordingly, these coatings are suitable for high-voltage insulators with high performance (volume resistivity 1.5×1017 (Ω.cm), surface resistivity 1.5×1012 (Ω.cm), tracking resistance:500 minutes at 5 KV, breakdown voltage: 145 KV, dielectric constant: 4.4, high fire resistance up to 340 ºC and long service at elevated temperatures) without the requirement for frequent cleaning.
1. Z. Zeng, P. Guo, R. Zhang, Z. Zhao, J. Bao, Q. Wang, Z. Xu, Review of aging evaluation methods for silicone rubber composite insulators, Polymers (Basel), 15(2023)1141.
2. F. Faiza, A. Khattak, A. U. Rehman, A. Ali, A. Mahmood, K. Imran, Multi-stressed nano and micro-silica/silicone rubber composites with improved dielectric and high-voltage insulation properties, Polymers (Basel), 13(2021)1400.
3. M. Z. Saleem, M. Akbar, Review of the performance of high-voltage composite insulators, Polymers (Basel), 14(2022)431.
4. Q. Wang, S. Liu, S. Liu, Z. Zuo, Y. Gao, C. Wu, Super-hydrophobic silicone rubber for outdoor electrical insulation, Nano Today, 58(2024)102406.
5. M. Gunasekaran, Basic forensic analysis of polymer concrete high voltage insulation in various applications, IEEE Electrical Insulation Conference, (2020)90–93.
6. L. E. Schmidt, A. Krivda, C. H. Ho, M. Portaluppi, Polymer concrete outdoor insulation – experience from laboratory and demonstrator testing, Annual Report Conference on Electrical Insulation and Dielectric Phenomena, (2010)1–3.
7. X. Tang, T. Wang, F. Yu, X. Zhang, Q. Zhu, L. Pang, Simple, robust and large-scale fabrication of superhydrophobic surfaces based on silica/polymer composites, RSC Advances, 3(2013)25670.
8. X. Zhang, Method for recoating RTV anti-pollution flashover coating on insulator coated with RTV anti-pollution flashover coating, (2016).
9. D. Qian, J. Zhou, J. Zheng, J. Cao, J. Wan, H. Fan, Synthesis, curing behaviors and properties of a bio-based trifunctional epoxy silicone modified epoxy thermosets, Polymers (Basel), 14(2022)4391.
10. H. Ye, L. Zhu, W. Li, H. Liu, H. Chen, Simple spray deposition of a water-based superhydrophobic coating with high stability for flexible applications, Journal of Materials Chemistry A, 5(2017)9882–9890.
11. C. Sunanda, M. N. Dinesh, N. Vasudev, Performance evaluation of silicon rubber insulating material with MgO and ZnO nanofillers, IEEE International Conference on High Voltage Engineering and Application, (2016)1–5.
12. C.-F. Jeffrey Kuo, N. Ahmad, S.-Y. Lin, G. R. S. Dewangga, M.-Y. Dong, Synthesis and characteristic applications of silicon resins for the modifying agent in heat conduction, Textile Research Journal, 92(2022)871–885.
13. V. S. Joseph, T. Calais, T. Stalin, S. Jain, N. K. Thanigaivel, N. D. Sanandiya, Silicone/epoxy hybrid resins with tunable mechanical and interfacial properties for additive manufacture of soft robots, Applied Materials Today, 22(2021)100979.
14. X. Wu, X. Li, J. Zhong, X. Xu, B. Xu, B. Ai, Preparation and characterization of UV-curable silicone resin containing perfluorocyclobutyl aryl ether groups, Silicon, 15(2023)5691–5701.
15. L. Wu, X. Wang, L. Ning, J. Han, Z. Wan, M. Lu, Improvement of silicone rubber properties by addition of nano-SiO₂ particles, Journal of Applied Biomaterials & Functional Materials, 14(2016)11–14.
16. C. Robeyns, L. Picard, F. Ganachaud, Synthesis, characterization and modification of silicone resins: An augmented review, Progress in Organic Coatings, 125(2018)287–315.
17. A. Jahromi, E. Cherney, S. Jayaram, Aging characteristics of RTV silicone rubber insulator coatings, IEEE Transactions on Dielectrics and Electrical Insulation, 15(2008)444–452.
18. S. A. Seyedmehdi, H. Zhang, J. Zhu, Superhydrophobic RTV silicone rubber insulator coatings, Applied Surface Science, 258(2012)2972–2976.
19. G. Momen, M. Farzaneh, Survey of micro/nanofiller use to improve silicone rubber for outdoor insulators, Reviews on Advanced Materials Science, 27(2011)1–13.
20. M. Afendi M. Piah, Effect of ATH filler on the electrical tracking and erosion properties of natural rubber-LLDPE blends under wet contaminated conditions, Journal of Industrial Technology, 13(2004)27–40.
21. S. R. Sandler, W. Karo, Silicone resins (polyorganosiloxanes or silicones), (Chapter 4), Organ Chem., 29(1977)114–139.
22. H. Khan, M. Amin, M. Ali, M. Iqbal, M. Yasin, Effect of micro/nano-SiO₂ on mechanical, thermal, and electrical properties of silicone rubber, epoxy, and EPDM composites for outdoor electrical insulations, Turk J Electr Eng Comput Sci., 25(2017)1426–1435.
23. R. Prabu, S. Usa, K. Udayakumar, M. Khan, S. S. M. Majeed, Electrical insulation characteristics of silicone and EPDM polymeric blends, IEEE Trans Dielectr Electr Insul., 14(2007)1207–1214.
24. L. Bazli, S. Eskandarinezhad, N. Kakur, V. Ramachandran, A. Bacigalupe, M. Mansilla, et al., Electrical properties of polymer blend composites based on silicone rubber/EPDM/clay for high voltage insulators, J Compos Compd., 2(2021)18–24.
25. J. P. Youngblood, T. J. McCarthy, Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma, Macromolecules, 32(1999)6800–6806.
26. F. Wang, G. Wen, F. Fan, T. Zhang, J. Li, Turn hydrophobic to superhydrophobic of composite insulators by surface fluorination, 2016 IEEE Int. Conf. High Volt. Eng. Appl., (2016)1–4.
27. S. A. Seyedmehdi, Functional coatings: superhydrophobic and conductive coatings, (2011).
28. S. Abdollahi Baghban, M. Khorasani, G. M. M. Sadeghi, Acoustic damping flexible polyurethane foams: effect of isocyanate index and water content on the soundproofing, J Appl Polym Sci., 136(2019).
29. S. Abdollahi Baghban, M. Khorasani, G. Mir Mohamad Sadeghi, Soundproofing flexible polyurethane foams: effect of chemical structure of chain extenders on micro-phase separation and acoustic damping, J Cell Plast., 56(2020)167–185.
30. S. Abdollahi Baghban, M. Khorasani, G. M. M. Sadeghi, Soundproofing performance of flexible polyurethane foams as a fractal object, J Polym Res., 27(2020)62.
31. S. Abdollahi Baghban, M. Khorasani, Polyurethane foam coating degradation: mechanisms and methods of assessment and prevention of degradation, Basparesh, 6(2016)95–106.
32. S. Abdollahi Baghban, M. Khorasani, Flexible acoustic polyurethane foam: an overview of physical structure and chemical properties, Basparesh, 8(2017)90–100.
33. H. K. Park, S. W. Yoon, W. W. Chung, B. K. Min, Y. R. Do, Fabrication and characterization of large-scale multifunctional transparent ITO nanorod films, J Mater Chem A, 1(2013)5860.
34. M. Nodehi, Epoxy, polyester and vinyl ester based polymer concrete: a review, Innov Infrastruct Solut., 7(2022)64.
35. L. Harvanek, T. Tomaskova, V. Mentlik, P. Trnka, Modification of epoxy resin used in high-voltage technology, 2015 16th Int Sci Conf Electr Power Eng., IEEE, (2015)346–349.
36. R. Kumar, N. Gupta, Tracking and surface degradation of barium titanate filled silicone rubber nanocomposites, 2015 IEEE Conf Electr Insul Dielectr Phenom., IEEE, (2015)495–498.
37. H. Khan, M. Amin, A. Ahmad, M. Yasin, Erosion/tracking resistance investigation of micro/nano-SiO₂ filled RTV-SiR composites for outdoor high voltage insulations, 2017 14th Int Bhurban Conf Appl Sci Technol., IEEE, (2017)15–19.
38. G. Wang, M. Lu, H. Yang, Y. Zhao, L. Wu, A novel pollution flashover-resistance RTV rubber coating, 2015 IEEE 11th Int Conf Prop Appl Dielectr Mater., IEEE, (2015)328–331.
39. L. H. Meyer, E. A. Cherney, S. H. Jayaram, The role of inorganic fillers in silicone rubber for outdoor insulation: alumina tri-hydrate or silica, IEEE Electr Insul Mag., 20(2004)13–21.
40. I. Ramirez, E. Cherney, S. Jayaram, M. Gauthier, Nanofilled silicone dielectrics prepared with surfactant for outdoor insulation applications, IEEE Trans Dielectr Electr Insul., 15(2008)228–235.
41. E. A. Cherney, R. Gorur, M. Marzinotto, A. El-Hag, L. Meyer, J. M. George, et al., RTV silicone rubber pre-coated ceramic insulators for transmission lines, IEEE Trans Dielectr Electr Insul., 20(2013)237–244.
42. Y. Huo, S. Xiu, L.-Y. Meng, B. Quan, Solvothermal synthesis and applications of micro/nano carbons: a review, Chem Eng J., 451(2023)138572.
43. X. Liu, Y. Wen, X. Chen, T. Tang, E. Mijowska, Co-etching effect to convert waste polyethylene terephthalate into hierarchical porous carbon toward excellent capacitive energy storage, Sci Total Environ., 723(2020)138055.
44. M. T. Khorasani, H. Mirzadeh, P. G. Sammes, Laser induced surface modification of polydimethylsiloxane as a super-hydrophobic material, Radiat Phys Chem., 47(1996)881–888.
45. J. Cheng, G.-P. Cao, Y.-S. Yang, Characterization of sol–gel-derived NiOx xerogels as supercapacitors, J Power Sources, 159(2006)734–741.
46. W. Ming, L. van Ravenstein, R. van de Grampel, W. van Gennip, M. Krupers, H. Niemantsverdriet, et al., Low surface energy polymeric films from partially fluorinated photocurable solventless liquid oligoesters, Polym Bull., 47(2001)321–328.
47. W. Ming, F. Melis, R. van de Grampel, L. van Ravenstein, M. Tian, R. van der Linde, Low surface energy films based on partially fluorinated isocyanates: the effects of curing temperature, Prog Org Coatings, 48(2003)316–321.
48. S.-H. Gao, K.-S. Zhou, M.-K. Lei, L.-S. Wen, Surface modification of silicone rubber by CF₄ radio frequency plasma immersion, Plasma Chem Plasma Process., 28(2008)715–728.
49. F. Zhang, Y. Zhou, H. Li, Nanocrystalline NiO as an electrode material for electrochemical capacitor, Mater Chem Phys., 83(2004)260–264.
50. R. Rahul, N. Prasad, R. R. Ajith, P. Sajeesh, R. S. Mini, R. S. Kumar, A mould-free soft-lithography approach for rapid, low-cost and bulk fabrication of microfluidic chips using photopolymer sheets, Microfluid Nanofluidics, 27(2023)78
51. Z. Tang, W. Liu, Y. Wang, K. M. Saleheen, Z. Liu, S. Peng, et al., A review on in situ monitoring technology for directed energy deposition of metals, Int J Adv Manuf Technol., 108(2020)3437–3463.
52. P. Sharma, F. Ponte, M. J. Lima, N. M. Figueiredo, J. Ferreira, S. Carvalho, Plasma etching of polycarbonate surfaces for improved adhesion of Cr coatings, Appl Surf Sci., 637(2023)157903.
53. B. Chen, Z. Wu, M. Tian, T. Feng, C. Yuanwei, X. Luo, Effect of surface morphology change of polystyrene microspheres through etching on protein corona and phagocytic uptake, J Biomater Sci Polym Ed., 31(2020)2381–2395.
54. C. Gül, S. Albayrak, Elastomeric nanocoatings, Polym Nanoscale Mater Surf Coatings., Elsevier, (2023)75–90.
55. L. Wang, A critical review on robust self-cleaning properties of lotus leaf, Soft Matter, 19(2023)1058–1075.
56. N. Vourdas, A. Tserepi, E. Gogolides, Nanotextured super-hydrophobic transparent poly(methyl methacrylate) surfaces using high-density plasma processing, Nanotechnology, 18(2007)125304.
57. H. J. Ensikat, P. Ditsche-Kuru, C. Neinhuis, W. Barthlott, Superhydrophobicity in perfection: the outstanding properties of the lotus leaf, Beilstein J Nanotechnol., 2(2011)152–161.
58. S. Abdollahi Baghban, M. Ebrahimi, M. Khorasani, S. Bagheri-Khoulenjani, Design of different self-stratifying patterns in a VOC-free light-curable coating containing bio-renewable materials: study on formulation and processing conditions, Prog Org Coatings, 161(2021)106519.
59. S. Abdollahi Baghban, M. Ebrahimi, M. Khorasani, S. Bagheri-Khoulenjani, Tailoring a variety of self-stratifying patterns in a light-curable coating on the substrates with different surface free energies, Prog Org Coatings, 171(2022)107023.
60. S. Abdollahi Baghban, M. Ebrahimi, M. Khorasani, S. Bagheri-Khoulenjani, Self-stratifying behavior of a novel light-curable coating with gradient hydrophobic properties: computational and experimental study, Prog Org Coatings, 159(2021).
61. S. Abdollahi Baghban, A theoretical and practical study of the influence of (met)acrylation on the solubility behavior of radiation curing oligomers for environmentally friendly coatings, Adv Mater New Coatings, 12(2024)224–237.
62. S. Abdollahi Baghban, M. Ebrahimi, S. Bagheri-Khoulenjani, M. Khorasani, A highly efficient microwave-assisted synthesis of an LED-curable methacrylated gelatin for bio applications, RSC Adv., 11(2021)14996–15009.
63. S. Abdollahi Baghban, M. Ebrahimi, M. Khorasani, A facile method to synthesis of a highly acrylated epoxidized soybean oil with low viscosity: combined experimental and computational approach, Polym Test., 115(2022)107727.
64. W. Chen, A. Y. Fadeev, M. C. Hsieh, D. Öner, J. Youngblood, T. J. McCarthy, Ultrahydrophobic and ultralyophobic surfaces: some comments and examples, Langmuir, 15(1999)3395–3399.
65. Y. Wang, Y. Xia, Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15, Electrochim Acta, 51(2006)3223–3227.
66. T. Nakamura, M. Kozako, M. Hikita, R. Inoue, T. Kondo, Experimental investigation on erosion resistance and hydrophobicity of silicone rubber nanocomposite, 2013 IEEE Int Conf Solid Dielectr., IEEE, (2013)230–233.
67. H. Gao, Z. Jia, Z. Guan, L. Wang, K. Zhu, Investigation on field-aged RTV-coated insulators used in heavily contaminated areas, IEEE Trans Power Deliv., 22(2007)1117–1124.
68. K. Guo, Y. Du, Y. Wu, X. Mi, X. Li, S. Chen, Morphology and FT-IR analysis of anti-pollution flashover coatings with adding nano SiO₂ particles, IOP Conf Ser Mater Sci Eng., 274(2017)012031.
69. Y. Tan, B. Du, C. Liang, X. Guo, H. Zheng, P. Liu, et al., Improving anti-humidity property of a SnO₂-based chemiresistive hydrogen sensor by a breathable and hydrophobic fluoropolymer coating, Langmuir, 38(2022)13833–13840.
70. Z. Belamri, Hydrophobic coatings on aluminum substrate based on different metal oxides: Co₃O₄, ZnO, and MgO, Prot Met Phys Chem Surfaces, 60(2024)390–3
71. S. Li, R. Xu, G. Song, B. Li, P. Fang, Q. Fu, et al., Bio-inspired (GO + CNTs)-PU hydrophobic coating via replication of lotus leaf and its enhanced mechanical and anti-corrosion properties, Prog Org Coatings, 159(2021)106414.
72. V. S. Saji, 2D hexagonal boron nitride (h-BN) nanosheets in protective coatings: a literature review, Heliyon, 9(2023)e19362.
73. H. Gu, J. Guo, X. Zhang, Q. He, Y. Huang, H. A. Colorado, et al., Giant magnetoresistive phosphoric acid doped polyaniline–silica nanocomposites, J Phys Chem C, 117(2013)6426–6436.
74. P. C. Okonkwo, I. Ben Belgacem, W. Emori, P. C. Uzoma, Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: a review, Int J Hydrogen Energy, 46(2021)27956–27973.
75. H. M. Shang, Y. Wang, S. J. Limmer, T. P. Chou, K. Takahashi, G. Z. Cao, Optically transparent superhydrophobic silica-based films, Thin Solid Films, 472(2005)37–43.
76. D. Ghosh, S. Bhandari, T. K. Chaki, D. Khastgir, Development of a high performance high voltage insulator for power transmission lines from blends of polydimethylsiloxane/ethylene vinyl acetate containing nanosilica, RSC Adv., 5(2015)57608–57618.
77. A. Syakur, Hermawan, H. Sutanto, Determination of hydrophobic contact angle of epoxy resin compound silicon rubber and silica, IOP Conf Ser Mater Sci Eng., 190(2017)012025.
78. S. H. Mahdi, W. H. Jassim, I. A. Hamad, K. A. Jasima, Epoxy/silicone rubber blends for voltage insulators and capacitors applications, Energy Procedia, 119(2017)501–506.
79. R. Chakraborty, B. S. Reddy, Performance of silicone rubber insulators under thermal and electrical stress, IEEE Trans Ind Appl., 53(2017)2446–2454.
80. J. Li, Y. Zhao, J. Hu, L. Shu, X. Shi, Anti-icing performance of a superhydrophobic PDMS/modified nano-silica hybrid coating for insulators, J Adhes Sci Technol., 26(2012)665–679.
81. M. T. Nazir, B. T. Phung, M. Hoffman, Performance of silicone rubber composites with SiO₂ micro/nano-filler under AC corona discharge, IEEE Trans Dielectr Electr Insul., 23(2016)2804–2815.
82. S. Liu, S. Liu, Q. Wang, Z. Zuo, L. Wei, Z. Chen, et al., Improving surface performance of silicone rubber for composite insulators by multifunctional nano-coating, Chem Eng J., 451(2023)138679.
83. J. Li, Y. Wei, Z. Huang, F. Wang, X. Yan, Z. Wu, Electrohydrodynamic behavior of water droplets on a horizontal superhydrophobic surface and its self-cleaning application, Appl Surf Sci., 403(2017)133–140.
84. M. Amin, A. Khattak, M. Ali, Accelerated aging investigation of silicone rubber/silica composites for coating of high-voltage insulators, Electr Eng., 100(2018)217–230.
85. F. Farhang, M. Ehsani, S. H. Jazayeri, Effects of the filler type and quantity on the flashover voltage and hydrophobicity of RTV silicone rubber coatings, Iran Polym J., 18(2009)149–157.
86. S. M. Ghouse, K. Vijayarekha, Influence of nanofillers in mechanical and electrical properties of polymeric insulation, Int J Mech Eng Technol., 8(2017)466–473.
87. M. T. Nazir, B. T. Phung, S. Yu, Y. Zhang, S. Li, Tracking, erosion and thermal distribution of micro‐AlN + nano‐SiO₂ co‐filled silicone rubber for high‐voltage outdoor insulation, High Volt., 3(2018)289–294.
88. F. Madidi, G. Momen, M. Farzaneh, Development of a stable TiO₂ nanocomposite self-cleaning coating for outdoor applications, Adv Mater Sci Eng., 2016(2016).
89. X. Chen, J. Wang, C. Zhang, W. Yang, J. Lin, X. Bian, et al., Performance of silicone rubber composites using boron nitride to replace alumina tri‐hydrate, High Volt., 6(2021)480–486.
90. W. Xiaofeng, W. Jincheng, Z. Yi, Study on the structure and properties of RTV/FR-DOMt nanocomposites, J Exp Nanosci., 11(2016)1058–1073.
91. M. T. Nazir, A. Khalid, C. Wang, J.-C. Baena, I. Kabir, S. Akram, et al., Synergistic effect of additives on electrical resistivity, fire and smoke suppression of silicone rubber for high voltage insulation, Compos Commun., 29(2022)101045.
92. S. Mohammadnabi, K. Rahmani, Effect of fabrication method on the physical properties of carbon-nanotube/silicone-rubber nanocomposite in high-voltage insulators, J Compos Mater., 57(2023)1959–1968.