The studying on mechanism, properties and application of shape memory polymers
Subject Areas :
1 - Amirkabir university of technology
Keywords: Shape memory polymers, Temperature, Mechanism, Interaction, Temporary shape,
Abstract :
Shape memory polymers (SMPs) represent a highly special class of materials. As one representative of the intelligent polymeric systems, these materials gained significant interest in recent years. SMPs are stimuli-responsive polymers, which act as stimulants like light, temperature, PH changes, solvent changes, electrical fields or magnetic fields, and their output is strain. Also, these polymers are highly regarded as essential for fundamental research and technological innovation. The present review will provide a short overview with particular attention to structure, mechanisms and applications of SMPs, shape memory effects and, as well as the current developments and concepts for shape memory polymers. The applications of shape memory polymers can be noted in medical industries, commercial industries, S hape memory polymers (SMPs) represent a highly special class of materials. As one representative of the intelligent polymeric systems, these materials gained significant interest in recent years. SMPs are stimuli-responsive polymers, which act as stimulants like light, temperature, PH changes, solvent changes, electrical fields or magnetic fields, and their output is strain. Also, these polymers are highly regarded as essential for fundamental research and technological innovation. The present review will provide a short overview with particular attention to structure, mechanisms and applications of SMPs, shape memory effects and, as well as the current developments and concepts for shape memory polymers. The applications of shape memory polymers can be noted in medical industries, commercial industries, aerospace industries, self-healing polymers, etc. aerospace industries, self-healing polymers, etc.
1 . Zhang X., Chen L., Lim K.H., Gonuguntla S., Lim K. W., Pranantyo D., Yong W.P., Yam W.J.T., Low Z., Teo W.J., Nien H. P., Loh W Q., Soh S.,. The Pathway to Intelligence: Using Stimuli-Responsive Materials as Building Blocks for Constructing Smart an Functional Systems, Adv. Mater., 31, 1804540, 2019.
2. Hager M.D., Bode S., Weber C., Schubert U.S., Shape Mem ory Polymers: Past, Present and Future Developments, Prog. Poly. Sci., 3-33, 2015.
3. Hu J., Zhu Y., Huang H., Lu J., Recent Advances in Shape–memory Polymers: Structure, Mechanism, Functionality, Mod eling and Applications., Prog Pol. Sci., 37, 1720-1763, 2012.
4. Liu W., Electroactive Shape Memory Composites with TiO2 Whiskers for Switching an Electrical Circuit., Mater. De s.,143, 196-203, 2018.
5. Zhang F., Nano/Microstructures of Shape Memory Polymers: From Materials to Applications., Nanoscale Horiz., 5, 1155-1173, 2020.
6. Zhang F., Zhao T., Ruiz-Molina D., Liu Y., Roscini C., Leng J., & Smoukov S. K., Shape Memory Polyurethane Mi cro cap sules with Active Deformation, ACS Appl. Mater. In terfaces, 12, 47059-47064, 2020.
7. Lan X., Liu L., Zhang F., Liu Z., Wang L., Li Q., Peng F., Hao S., Dai W., Wan X and Tang Y. World’s First Spaceflight on-Orbit Demonstration of a Flexible Solar Array System Based on Shape Memory Polymer Composites, Sci. China Technol. Sci., 63, 1436-1451, 2020.
8. Xia Y., He Y., Zhang F., Liu Y., Leng J., A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications, Adv. Mater., 33, 2000713, 2021.
9. Huang X., Zhang F., Leng J., Metal Mesh Embedded in Colorless Shape Memory Polyimide for Flexible Transparent Electric-heater and Actuators, Appl. Mater. Today., 21, 100797, 2020.
10. Huang X., Zhang F., Liu Y., & Leng J., Active and Deformable Organic Electronic Devices Based on Conductive Shape Memory Polyimide, ACS Appl. Mater. Interfaces, 12, 23236-23243, 2020.
11. Lendlein A., Kelch S., Shape-memory Polymers, Angew Chem Int Ed, 41, 2034-2057, 2002.
12. Leng J., Lan X., Liu Y., Du S., Shape-Memory Polymers and Their Composites: Stimulus Methods and Applications, Prog. Mater. Sci., 56, 1077-1135, 2001.
13. Zhao Q., Qi H.J., Xie T., Recent Progress in Shape Memory Polymer: New Behavior, Enabling Materials, and Mechanistic Understanding, Prog. Polym. Sci., 79-120, 2015.
14. Lendlein A., Oliver EC., Gould. Reprogrammable Re cov ery and Actuation Behavior of Shape-Memory Poly mers, Nat. Rev. Mater., 4, 116-133, 2019.
15. Aoki D., Teramoto Y., Nishio Y., SH-Containing Cellu lose Acetate Derivatives: Preparation and Characterization as a Shape Memory-Recovery Material, Biomacromolecules, 8, 3749-3757, 2007.
16. Chen S,. Hu J., Zhuo H., Yuen C., Chan L., Study on the Thermal-induced Shape Memory Effect of Pyridine Containing Supramolecular Polyurethane, Polymer, 51, 240-248, 2010.
17. Chen S., Hu J., Yuen C.W., Chan L., Supramolecular Poly urethane Networks Containing Pyridine Moieties for Shape Memory Materials, Mater. Lett., 63, 1462-1464, 2009.
18. Chen S., Hu J., Yuen C-W., Chan L., Novel Moisture-sensitive Shape Memory Polyurethanes Containing Pyridine Moi eties, Polymer, 50, 4424-4428, 2009.
19. Ying S., Yoonessi M., and Weiss R.A., High Temperature Shape Memory Polymers, Macromolecules, 46, 4160−4167, 2013.
20. Whittell G.R., Hager M.D., Schubert U.S., Manners I., Functional Soft Materials from Metallopolymers and Metallosupramolecular Polymers, Nat. Mater., 10, 176-188, 2011.
21. Liu C., Qin H., and Mather P. T., Review of Progress in Shape-Memory Polymers, J. Mater. Chem., 17, 1543–1558, 2007.
22. Liem H., Yeung L. Y., and Hu J. L., A Prerequisite for the Effective Transfer of the Shape-Memory Effect to Cotton Fi bers, Smart Materials and Structures, 16, 45-57, 2007.
23. Wang L., Zhang F., Liu Y., & Leng J., Shape Memo ry Poly mer Fibers: Materials, Structures, and Applications, Ad v. Fib. Mater., 1-19, 2021.
24. Zhao J., & Cui W., Functional Electrospun Fibers for Local Therapy of Cancer, Ad v. Fib. Mater., 2, 229-245, 2020.
25. Maitland D.J., Metzger M.F., Schumann D., Lee A., Wil son T S, Photothermal Properties of Shape Memory Poly mer Mi cro-actuators for Treating Stroke, Lasers. Surg. Med., 30, 1-11, 2002.
26. Metzger M.F., Wilson T.S., Schumann D., Matthews D L., Maitland D J., Mechanical Properties of Mechanical Actuator for Treating Ischemic Stroke, Bio. Micro., 4, 89-96, 2002.
27. Rolland P.H., Mekkaoui C., Vidal V., Berry J.L., Moore J.E., Moreno M., Amabile P., Bartoli J M., Compliance Matching Stent Placement in the Carotid Artery of the Swine Pro motes Optimal Blood Flow and Attenuates Restenosis, Eur. J. Vasc. En dovasc. Surg., 28, 431-438, 2004.
28. Higashida R.T., Meyers P.M., Intracranial Angioplasty and Stenting for Cerebral Atherosclerosis: New Treatments for Stroke are Needed, Neuroradiology, 48, 367-372, 2006.
29. Ajili S H., Ebrahimi N G., Soleimani M., Polyurethane/polycaprolactane Blend With Shape Memory Effect as a Pro posed Material for Cardiovascular Implants, Acta. Bio ma ter., 5, 1519-1530, 2009.
30. Li F., Yanju L., Leng J., Progress of Shape Memory Polymers and Their Composites in Aerospace Ap pli cations, Smart Mater. Struct., 28, 103003, 2019.
31. Schueler R.M. Self-deploying Trusses Containing Shape-memory Polymers, NASA Tech Briefs, 20-1, 2008.
32. Liu Y., Du H., Liu L., Leng J., Shape Memory Polymers and Their Composites in Aerospace Applications: A Review, Smart Mater. Struct., 23, 1-22, 2014.
33. Tengfei L., Tang Z., and Guo B., New Design Strate gy for Reversible Plasticity Shape Memory Polymers with De form able Glassy Aggregates, ACS Appl. Mater. Interfaces., 6, 21060-21068, 2014.